
ISBN: 978-1-906434-88-5

DBA Handbooks

The Art of
SQL Server FILESTREAM
A Quick Start Guide for developers and administrators

Jacob Sebastian & Sven Aelterman

The Art of SQL Server
FILESTREAM

A Quick Start Guide
for developers and administrators

By Jacob Sebastian and Sven Aelterman

First published by Simple Talk Publishing June 2012

Copyright June 2012

ISBN 978-1-906434-88-5

The right of Jacob Sebastian and Sven Aelterman to be identified as the authors of this work has been asserted

by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than that in which

it is published and without a similar condition including this condition being imposed on the subsequent

publisher.

Technical Review by Sven Aelterman

Cover Image by Andy Martin

Edited by Tony Davis and Heather Fielding

Typeset & Designed by Peter Woodhouse & Gower Associates

Table of Contents

Introduction__19

Chapter 1: Storing and Managing Unstructured Data_ ________________23
Structured Data_ ___ 24
Unstructured Data___27

CLOB data___28
BLOB data_ __29

Storing Unstructured Data_ ___30
Storing Large Objects in SQL Server_ ___________________________________30
Storing Large Objects in the file system__________________________________ 32
Database or file system?___ 32

Enter FILESTREAM_ ___ 37
A first look at FILESTREAM_ __39
When to use FILESTREAM___ 44

Summary__ 46

Chapter 2: Getting Started with FILESTREAM_ _____________________ 48
The FILESTREAM Data Container_______________________________________ 48
Understanding the FILESTREAM Filegroup________________________________50
Creating FILESTREAM-enabled Databases_________________________________ 53

Creating a new FILESTREAM-enabled database___________________________ 53
Enabling an existing database for FILESTREAM___________________________59

Creating a Table with FILESTREAM Columns_ ____________________________ 60
Using SSMS table designer to create a table with FILESTREAM columns______ 60
Using T-SQL to create a table with FILESTREAM columns_ _________________ 61
Using T-SQL to add FILESTREAM columns to an existing table_ _____________63
Converting VARBINARY(MAX) columns to FILESTREAM and vice versa______ 66
Tables and FILESTREAM filegroups____________________________________ 68
FILESTREAM filegroup queries_ ______________________________________ 69

FILESTREAM Data Manipulation Using T-SQL____________________________ 70
Inserting a row with FILESTREAM data_ ________________________________72

Updating and deleting FILESTREAM data________________________________78
FILESTREAM and triggers_ ___79

Advanced FILESTREAM DDL___ 80
The FILESTREAM data container and partitioned tables___________________ 80
Creating a database with multiple FILESTREAM filegroups__________________ 83

Disabling FILESTREAM Storage on a Database_ ____________________________87
Summary___

Chapter 3: Accessing FILESTREAM Data from Client Applications_ ____ 89
What is Streaming?__ 89
Understanding Streaming Access to FILESTREAM Data_____________________ 90

Step 1: Starting a transaction___ 91
Step 2: Retrieving the logical path name and transaction context_ ____________92
Step 3: Opening the FILESTREAM data file_______________________________95
Step 4: Reading and writing FILESTREAM data_ _________________________ 98
Step 5: Closing the FILESTREAM data file_______________________________ 101
Step 6: Closing the transaction (COMMIT/ROLLBACK)_ __________________ 101

Data Manipulation Using the Streaming APIs_ ____________________________102
Inserting a new record into a FILESTREAM-enabled table__________________ 102
Replacing the FILESTREAM data completely_ ___________________________ 103
Partial updates to FILESTREAM data___________________________________104
Reading information from the FILESTREAM store________________________ 105
Deleting the BLOB data stored in a FILESTREAM column_ ________________ 105
Deleting a row from a FILESTREAM-enabled table_ ______________________ 105

Lab 1: Reads, Writes and Partial Updates__________________________________106
Handling multiple FILESTREAM columns and rows_ _____________________ 114

Understanding the Logical Path to a FILESTREAM Data File_ _______________ 115
Formatting PathName()__ 119
PathName() and ROWGUIDCOL______________________________________ 120

SqlFileStream Class Reference_ ___ 123
Instantiating a SqlFileStream object____________________________________ 123

OpenSqlFilestream API Reference_ ______________________________________ 126
Summary__ 130

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL______ 131
Lab 2: FILESTREAM and Entity Framework_______________________________ 132

Rebuilding the sample database_ ______________________________________ 133
Lab 2a: A simple EF application using T-SQL access_______________________ 134
Lab 2b: Using SqlFileStream and Entity Framework together________________ 144

Lab 3: FILESTREAM and LINQ to SQL_ __________________________________ 158
Creating a new console application project_ _____________________________ 158
Adding a LINQ to SQL class__ 158
Defining object relational mappings____________________________________ 159
Adding a new row_ ___ 162
Querying FILESTREAM data using LINQ to SQL_________________________ 162

Summary__ 163

Chapter 5: FILESTREAM with ASP.NET and Silverlight________________165
Lab 4: Uploading Files to a FILESTREAM Database from

an ASP.NET Web Page___ 167
Creating a new ASP.NET web application_ ______________________________ 167
Adding a database connection string_ __________________________________ 168
Designing the data entry page_ _______________________________________ 169
Writing the "code-behind"__ 171
Running the application_ __ 175

Lab 5: Deploying and Configuring a FILESTREAM Web Application on IIS_ ____ 176
Running Visual Studio under an administrator account____________________ 177
Publishing the web application into a new virtual directory_________________ 177
Configuring IIS to use SQL Server Integrated Security_____________________ 181
Running the application_ __ 188

Lab 6: Creating a Web Handler to Serve Images from
a FILESTREAM Database___189

Creating a stored procedure to retrieve FILESTREAM data_ ________________ 189
Creating the web page to serve images__________________________________190
Running and testing the application_ __________________________________ 193

Lab 7: Displaying Thumbnail Images of Items from
a FILESTREAM Database on an ASP.NET Web Page___________________194

Creating the stored procedure to fetch item information___________________ 194
Adding a new web form and data grid_ _________________________________ 196
Adding a data source__ 196

Lab 8: Using SqlFileStream in an N-Tier Scenario_ ________________________ 204
Creating the Visual Studio solution and projects__________________________205
Writing the domain object code_______________________________________207
Writing the data access code__207
Creating an HTTP handler to serve images_____________________________ 209
Adding remote calling capability_ _____________________________________ 211
Testing the application from Visual Studio_ _____________________________ 215

Lab 9: Playing a Video Stored in a FILESTREAM Database on
a Silverlight Application__ 216

Setting up the data___ 217
Creating a Silverlight application_ _____________________________________ 218
Creating a video handler___ 219
Adding and configuring MediaElement_ ________________________________ 222
Running and testing the application_ __________________________________224

Summary__ 225

Chapter 6: FILESTREAM with SSIS and SSRS_ ______________________227
FILESTREAM and SSIS_ ___228
Lab 10: Loading BLOB Values into a FILESTREAM Column Using SSIS________228

Setting up the sample database__230
Creating the SSIS package__ 235

Lab 11: Exporting BLOB Values from a FILESTREAM Column Using SSIS______256
Creating the SSIS package__ 256
Setting the output folder___ 256
The Execute SQL task___ 257
The Foreach Loop container__ 257
The Script task___ 258

Lab 12: Displaying FILESTREAM Data in SSRS Reports_ ___________________ 260
Summary___ 269

Chapter 7: FILESTREAM Database Administration___________________270
FILESTREAM and Database Transaction Isolation Levels_ __________________ 271

READ COMMITTED, REPEATABLE READ and SERIALIZABLE
isolation levels_ __ 271
READ UNCOMMITTED isolation level_ _______________________________ 272
Snapshot isolation level__ 273
Summary of FILESTREAM behavior under transaction isolation levels_ ______ 275

Detaching and Attaching FILESTREAM Databases_ ________________________276
FILESTREAM and Garbage Files___279

Garbage files and recovery models_ ____________________________________279
FILESTREAM garbage collection and tombstone tables___________________ 280

FILESTREAM Data Corruption and DBCC Checks________________________ 284
Corruption caused by missing FILESTREAM data files_____________________ 285
Corruption caused by orphaned files_ __________________________________ 291
Corruption caused by deleting the garbage files manually_ _________________292

Querying FILESTREAM Databases_ _____________________________________293
FILESTREAM Data and Space Management______________________________ 294

Changing the FILESTREAM filegroup location___________________________ 295
Adding a new partition to share the FILESTREAM storage load_ ___________ 299

Migrating FILESTREAM Data__306
SSMS scripting___306
The Database Publishing Wizard_ _____________________________________309

Summary__ 310

Chapter 8: Backup and Restore for FILESTREAM Databases___________312
Creating and Populating the Sample Database_____________________________ 313
Backing up FILESTREAM Databases_ ____________________________________ 314

Full backups___ 315
Differential backups__ 315
Transaction log backups_ __ 316

Restoring FILESTREAM Databases_ _____________________________________ 318
Restoring from a full backup__ 319
Point-in-time restore__ 319

File Backups and Piecemeal Restores_____________________________________ 322
Data and Backup Compression for FILESTREAM Databases_ ________________ 325
Beware of Garbage Files in FILESTREAM Backups_ ________________________326
Summary__328

Chapter 9: Investigating FILESTREAM Databases_ _________________ 329
Relevant System Catalog Views__329

sys.all_columns, sys.columns and sys.system_columns_ ___________________ 330
sys.computed_columns__ 331
sys.identity_columns__ 331
sys.dm_repl_traninfo_ __ 331
sys.tables___ 332
sys.internal_tables__ 332
sys.partitions_ ___ 333
sys.data_spaces_ ___ 333
sys.database_files___ 334
sys.filegroups_ ___ 334
sys.system_internals_partition_columns________________________________ 334
sys.system_internals_partitions_ ______________________________________ 335
sys.filestream_tombstone_*_ ___ 335

Useful FILESTREAM Metadata Queries_ _________________________________ 335
SQL Server instance-level queries______________________________________ 336
Database-level queries___340

FILESTREAM-related DMVs__346
sys.dm_filestream_file_io_handles_____________________________________346
sys.dm_filestream_file_io_requests_ ___________________________________ 347
sys.dm_tran_active_transactions______________________________________348

FILESTREAM and Wait Types___348
FS_FC_RWLOCK_ ___348
FS_GARBAGE_COLLECTOR_SHUTDOWN_ __________________________349
FS_HEADER_RWLOCK___349
FS_LOGTRUNC_RWLOCK__349
FSA_FORCE_OWN_XACT_ ___349

FSAGENT___ 350
FSTR_CONFIG_MUTEX_ ___ 350
FSTR_CONFIG_RWLOCK___ 350

Summary__ 350

Chapter 10: Integrating FILESTREAM with other SQL Server Features_ _ 351
FILESTREAM and Replication_ ___ 352

Replicating FILESTREAM columns_ ___________________________________ 352
Maximum replication data size__ 355
FILESTREAM replication and the UNIQUEIDENTIFIER column____________ 357
Managing the FILESTREAM replication flag using T-SQL__________________360
Replication log reader and the FILESTREAM garbage collector______________ 365
FILESTREAM and synchronization methods_ ___________________________366
Replicating databases with multiple FILESTREAM filegroups_ ______________ 367
FILESTREAM and the different replication types_ ________________________368

FILESTREAM and Log Shipping___370
FILESTREAM and Full-Text Indexing_ ___________________________________ 371
FILESTREAM and Database Snapshots_ __________________________________ 375
FILESTREAM and Change Data Capture_ ________________________________ 377
FILESTREAM and Data Compression_ ___________________________________382
FILESTREAM and Transparent Data Encryption___________________________382
FILESTREAM and Database Mirroring_ __________________________________ 383
FILESTREAM and High Availability Disaster Recovery______________________384
Summary__ 385

Chapter 11: FileTable__387
Introduction to FileTable__387
FileTable Concepts_ ___388

Fixed schema_ ___ 388
Creating folder structures using the HIERARCHYID data type_ _____________ 392
Root folder__ 395
Non-transactional access__396
FileTable namespace_ ___398
FileTable security__ 400

Setting Up the Server for FileTable______________________________________ 402
Creating a Database with Support for FileTable___________________________ 402
Creating a FileTable_ ___ 404

Create a FileTable using T-SQL_______________________________________ 404
Create a FileTable using SSMS_ ______________________________________ 406
Work with a FileTable using SSMS____________________________________ 408
Adding constraints to the FileTable_ __________________________________ 409
Restrictions on creating FileTables_____________________________________410

Accessing a FileTable with Windows Explorer and Other Client Applications___ 411
Creating files_ ___ 411
Creating folders__ 413
Memory-mapped files_ __ 413
Empty database folder___ 414

Programming FileTable__414
Adding rows using T-SQL__ 415
Using .NET file I/O APIs__ 420

Managing FileTables___423
T-SQL functions_ __ 423
Catalog and Dynamic Management Views_______________________________426
Stored procedures_ ___429

Advanced FileTable Uses_ __430
Full-text search_ ___430
Semantic search__ 432

Investigating FileTable___ 435
Summary__ 435

Chapter 12: Planning, Configuration and Best Practices______________437
Planning__437
Optimizing your Storage Configuration for FILESTREAM___________________439

Keep FILESTREAM data containers on a separate disk volume_ _____________439
Disabling short file names__439
Compressing FILESTREAM data_ _____________________________________443
Configuring NTFS cluster size_ ______________________________________ 444

Disabling the indexing service_ _______________________________________445
Configuring antivirus_ ___ 446
Disabling the Last Access Time attribute________________________________447
Configuring the disks with the correct RAID level_ ______________________ 448
Regular disk defragmentation__ 449

Setting up FILESTREAM for Remote Access______________________________ 449
Configuring the client computer for remote access________________________450
Configuring the client application for remote access_ _____________________450

Best Practices for FILESTREAM Development_____________________________ 451
Use FILESTREAM streaming APIs to read and write FILESTREAM data_ _____ 451
Avoid small partial updates___ 451
Keep an additional column to store the type of file or extension_ ____________ 452
Identifying the type of file from a file header_____________________________ 452
Add a content-type column on FILESTREAM tables_ _____________________454
Add a timestamp or date column to track last modified date
for cache control_ __454
Use a computed column to retrieve the file size_ _________________________ 455
Keep a default constraint on FILESTREAM columns_ _____________________456

Summary__457

Appendix A: Configuring FILESTREAM on a SQL Server Instance_ _____ 459
Understanding FILESTREAM Configuration and Access Levels_______________461

FILESTREAM access levels_ __ 461
Enabling and Configuring FILESTREAM During Installation_ ______________ 466

Enable FILESTREAM for Transact-SQL access_ __________________________467
Enable FILESTREAM for file I/O streaming access_ _______________________467
Allow remote clients to have streaming access to FILESTREAM data_ _______ 468

Enabling and Configuring FILESTREAM After Installation_________________ 469
Configuring FILESTREAM at the Windows level_ _______________________ 469
Configuring FILESTREAM at the SQL Server instance level_ _______________ 471

Verifying FILESTREAM Configuration_ __________________________________475
Verifying Windows-level FILESTREAM configuration settings_ _____________ 475
Verifying SQL Server Instance-level FILESTREAM configuration settings_ ____477

Using SSMS to check that FILESTREAM is enabled_ ______________________477
Using T-SQL to check that FILESTREAM is enabled_ _____________________478

Disabling the FILESTREAM Feature_ ___________________________________ 479
Advanced Installation and Configuration Options_ ________________________481

Unattended SQL Server installation and FILESTREAM configuration_ _______ 481
Enabling and configuring FILESTREAM from the command line_ ___________483
Configuring FILESTREAM access level from the command line_ ___________ 484
Setting up FILESTREAM on a failover cluster____________________________485

Summary___ 486

xiv

About the authors

Jacob Sebastian

Jacob Sebastian is a Microsoft MVP (SQL Server) from Ahmedabad, India, who has been
working with SQL Server for almost 15 years. He works as CTO with Excellence Infonet,
Ahmedabad, which focuses on building highly scalable, mission critical applications for
the healthcare industry.

Jacob started his database career in the early nineties with Dbase and then moved to
Clipper, FoxPro and, finally, to SQL Server, starting with version 6.5. He has presented
at various SQL Server conferences, including PASS Global Summit, European PASS
Conference, 24 Hour PASS, Tech-ED India, Community Techdays, Microsoft Virtual
Techdays, SQL Server Saturday and more.

Jacob wrote his first book in 2009, The Art of XSD – SQL Server XML Schema Collections
(http://brurl.com/fs21) which delved deeply into the XSD and XML Schema collections,
introduced in SQL Server 2005. He also wrote the XML chapter for the book, SQL Server
2008 Bible (http://brurl.com/fs22).

When not working, Jacob spends time at beyondrelational.com.

Jacob was the lead author on this book, and wrote Chapters 1 to 10.

http://brurl.com/fs21
http://brurl.com/fs22
http://beyondrelational.com/

xv

Sven Aelterman

Sven Aelterman is a lecturer in Information Systems at Troy University in Troy, Alabama.
He teaches undergraduate courses in data warehousing, network infrastructure and
security. He is also the technology specialist for Troy University's Sorrell College of
Business, and performs a variety of technology roles with a global scope.

He continues consulting work through Adduxis, where he assists customers with
software development projects using the Microsoft .NET Framework and related
technologies. Sven focuses on application design and architecture and secure coding
practices. He received his MBA from Troy University and his bachelor's degree from the
Hogeschool Gent (University College, Ghent) in Belgium, his native country. Sven is
married to Ebony and they have a son, Edward, and a daughter, Sofia.

Sven contributed Chapter 11 to this book, and the labs in Chapters 4 and 5, as well as some
additional material throughout.

xvi

Acknowledgements

Jacob Sebastian

This is my third book and, as always, the first name I would like to mention is Steve Jones
at SQLServerCentral.com, who deserves the credit for igniting my passion for writing.
Thereafter, I've benefited from the help of numerous mentors. Big thanks, in particular, to
Jeff Moden, Madhu Nair, Kent Waldrope, Arnie Rowland, and Michael Coles, all of whom
played a significant role in shaping my attitude towards the SQL Server community.

I would like to thank Tony Davis at Red Gate, who helped me to get this project started
and guided me throughout this long journey. Tony not only managed the project, but
also stepped in at every stage throughout the writing process, commenting, correcting,
rephrasing and reorganizing to mold the content into the shape in which you see it in
this book.

Sven Aelterman, technical reviewer and co-author of this book deserves major credit
since this book would not have been possible without his involvement and hard work.
He wrote the entire chapter on FileTable and rewrote several sections of other chapters,
including many of the code samples. His expertise in SQL Server, FILESTREAM and
various Web/.NET technologies has played a crucial role in ensuring the accuracy of
information presented in the book.

Several other people contributed, directly or indirectly, to this book throughout the
journey. Michael Rys and Srini Acharya at Microsoft were kind enough to answer many
of my various questions, as was Paul Randal at sqlskills.com. My friend, Sudeep Raj, did
a wonderful internal review of the SSIS lab and provided some valuable comments. Many
times during this journey, I needed to recharge and refocus on the goal of completing the
book. For helping me achieve this, I thank my friends Anil, Khyati, Pinal, Krupali, Tejas,
Nakul, Vinod Kumar, and everyone else who helped motivate me along the way.

http://SQLServerCentral.com/
http://www.sqlskills.com/

xvii

Finding time for writing such a lengthy book has been a real challenge. I ended up
stealing the weekends, holidays, early mornings and late night hours from the family. I
dedicate this book to my wife Jincy and daughters Julie and Jiya. Without your support,
encouragement and understanding, I would not have been able to write it.

Finally, I would like to thank all the readers of my articles, blogs, and previous books, for
their continuous feedback and encouragement.

Sven Aelterman

Participating in the technical review and authoring of this book has been a unique
experience and one that would not have been possible without the efforts of many
others. I am, first and foremost, grateful to Jacob for allowing me to share the authorship
of this work with him. Jacob is, without a doubt, a leading expert in SQL Server and
FILESTREAM. Working with him has allowed me to learn so much, including the fact
that I didn't yet know everything about FILESTREAM. A close second is reserved for
the efforts of our editor, Tony Davis. It was probably sufficient to ask him to coordinate
Jacob's writing and my reviews, but his role didn't stop there. Adding an additional
chapter and more content to the book doubtlessly caused him long nights. I appreciate
his experience and guidance in seeing us through this venture.

As you're about to learn, SQL Server FILESTREAM is an exciting and intricate feature. I
would like to claim that I was able to figure it all out on my own, but I would do injustice
to several people who helped clarify some of the finer points (where the documentation
wasn't always helpful).

First, Microsoft developer evangelist, Glen Gordon, was instrumental in connecting me
to members of the SQL Server team, whom I'd like to thank for reading and responding
to my wordy questions. Finally, Paul Randal at SQLskills was also called upon for some
verification.

xviii

While the help of these professionals was vital to the accuracy and completeness of the
book, I am equally thankful to my wife, Ebony, for her support during the late nights of
researching, editing, and writing. She was very much aware of the existence of our two
children. I am not so sure if she was aware of the existence of her husband anymore.
(Honey, he was the one sleeping in late while you were raising the kids.)

19

Introduction

When I first started my database career in the early 1990s, all the applications on which
I worked dealt with simple relational data, stored in a few relational tables. The most
commonly used data types were strings, numbers, dates, and Boolean. Many of these were
single-user applications that lived on a single computer.

Soon, however, and rapidly, applications started becoming more complex, and new and
more challenging data processing requirements began to emerge. Many applications
started dealing with unstructured data. Along with relational data, our applications
needed to be able to generate, process and serve non-relational data such as XML, images,
music, videos, and so on.

SQL Server 6.5 offered two data types for storing large chunks of text and binary data,
namely text and image respectively. SQL Server 7.0 added one more data type,
ntext, which enabled storage of Unicode text. SQL Server 2005 added the data types
VARCHAR(MAX), NVARCHAR(MAX) and VARBINARY(MAX), which made reading and
writing chunks of unstructured data much simpler. Despite these improvements, the
basic underlying problem remained: SQL Server is primarily a relational database
management system and optimized for processing relational data. Reading and writing
large chunks of text/binary data within the database requires a lot of SQL Server internal
memory (buffers as big as the size of the chunk being read/written), and multiple,
simultaneous requests for large blocks of data can put the server under severe
memory pressure.

The workaround adopted by most database architects was to store the unstructured data
as disk files on the file system, and store only the path to the file in the relational table.
The file system is optimized for reading and writing large files, and offers streaming
capabilities. This solved the performance problems, but introduced new challenges. In
this scheme, we had no way to ensure transactional consistency between relational data
and data in the file system. Also, management of backups was complicated, since the
normal database backups were only possible if accompanied by the corresponding backup
of the file system.

20

When SQL Server 2008 introduced the FILESTREAM feature, it had my immediate
attention. At last, we had a way to store the unstructured data in the file system and
thus take advantage of the NTFS streaming capabilities but, at the same time, ensure
transactional consistency between the relational data and the file system data. In
addition, a normal database backup would now also include the file system data.

It's safe to say I was an early adopter, and my primary goal with this book is to ease the
paths of others who are interested in this technology, as some aspects of its adoption
proved far from plain sailing.

This book attempts to guide you, step-by-step, through every phase of FILESTREAM
implementation, from enabling the feature, to creating FILESTREAM tables, to manipu-
lating FILESTREAM data through the streaming APIs, to handling FILESTREAM data in
simple ASP.NET web pages, to complex N-tier .NET applications.

It also covers, in detail, administration and troubleshooting of FILESTREAM databases
and tables. Alongside the advantages offered by the technology, it tries to cover
some of its shortcomings, and to offer practical advice on workarounds, or possible
alternative solutions.

Who is this book for?

The primary audience for this book is the SQL Server developers who have to deal with
more than relational data. It will help them to get started with FILESTREAM-enabled
databases, and it provides a very detailed coverage on accessing FILESTREAM data
through the .NET and Win32 APIs. We have provided a reasonable number of examples,
sample code, and labs that demonstrate how to access FILESTREAM data from C#.NET,
VB.NET and C++. In addition, there are several labs demonstrating FILESTREAM access
from common application platforms/tools such as ASP.NET, Silverlight, SSIS, SSRS (SQL
Server Reporting Services), Entity Framework, LINQ to SQL and so on.

21

The secondary audience for this book are any SQL Server administrators and technical
project managers on projects requiring the storage and retrieval of BLOB (Binary Large
Objects) data. The second half of the book is dedicated to FILESTREAM database admin-
istration-related topics covering almost everything you might need to know when dealing
with FILESTREAM-enabled databases.

How this book is organized

Chapters 1–2 of the book provide an overview of the FILESTREAM feature and enough
information to enable the technology and then start creating a FILESTREAM-enabled
database, tables and columns, and manipulating FILESTREAM data with T-SQL.

Chapters 3–6 explain how to access FILESTREAM data from client applications, through
the streaming APIs, targeting the interests of database developers. Topics covered include
how to:

•	 access FILESTREAM data in a transactionally consistent manner using C#.NET
(with equivalent code examples provided in C++ and VB.NET)

•	 access FILESTREAM data with Entity Framework and LINQ to SQL

•	 deploy and configure FILESTREAM Web Applications with IIS (Internet
Information Services)

•	 handle FILESTREAM data in N-tier .NET applications.

Chapters 7–10 cover topics relating to the administration of FILESTREAM-enabled
databases, such as backup and restore, migrating FILESTREAM databases and data, and
investigating FILESTREAM databases, using Dynamic Management Views (DMVs).

22

Chapter 11 takes an in-depth look at an extension of FILESTREAM, called FileTable, which
was introduced in SQL Server 2012. A FileTable can store the data on an entire NTFS
folder hierarchy. Unlike a regular FILESTREAM column, client applications can directly
access the files in a FileTable.

Chapter 12 provides a summary of some of best practices to observe when using the
FILESTREAM feature.

Finally, there is an appendix providing advice on how to set up, review and troubleshoot
FILESTREAM configuration-related problems.

Code examples

Throughout this book are scripts demonstrating use of the FILESTREAM feature. All the
code you need to try out the examples in this book can be obtained from the URL below.

http://www.simple-talk.com/RedGateBooks/SebastianAelterman_ArtOfSQL-
ServerFILESTREAM_Code.zip.

All examples should run on all versions and editions of SQL Server from SQL Server 2008
upwards, unless specified otherwise. You must have .NET Framework 3.5 SP 1 or later
to run the .NET examples. Some of the .NET examples use the .NET 4.0 method
Stream.CopyTo(), and you will need either .NET 4.0 for those examples, or to replace
this method with equivalent code in .NET 3.5 (as explained with the relevant code
listings). To run the labs, you will need the associated environment, such as Silverlight
SDK (Software Development Kit) for the Silverlight Lab, SQL Server Reporting Services
for the SSRS Lab, SQL Server Integration Services for the SSIS Lab, and so on. Chapter 11,
on FileTable, requires SQL Server 2012.

http://www.simple-talk.com/RedGateBooks/SebastianAelterman_ArtOfSQLServerFILESTREAM_Code.zip
http://www.simple-talk.com/RedGateBooks/SebastianAelterman_ArtOfSQLServerFILESTREAM_Code.zip

23

Chapter 1: Storing and Managing
Unstructured Data

One of the challenges of designing data storage of SQL Server-driven applications is
that not all data fits into the relational model. The relational model expects each table
to describe a discrete entity and each column in the table to define exactly one aspect of
that entity. Much business data is less structured in nature; it is becoming increasingly
common to need to store images, documents, and speech data (PDF, MP3, and so on)
alongside the relational data.

It's been possible to store this sort of unstructured data in SQL Server for a number of
years, but there have always been associated difficulties. With older, large object (LOB)
data types, such as TEXT, NTEXT, and IMAGE, the data was generally held out of row, i.e.
on a different page from the rest of the row data. Reading and modifying the data, using
T-SQL functions such as READTEXT and WRITETEXT was painfully slow. The intro-
duction of the large-value (MAX) data types, namely VARCHAR(MAX), NVARCHAR(MAX)
and VARBINARY(MAX) improved matters somewhat and made it easier to develop appli-
cations that used these LOB data types. However, it was still preferable to store these
LOBs on the file system, with only a link to the data stored in the database, in order to
avoid the buffer pool pollution that arose from having such data stored inline, and also
to take advantage of high-performance streaming, lower rates of fragmentation during
modifications, and so on, that are offered by file system storage.

Nevertheless, storing LOBs on the file system, separately from the rest of the business
data, was not without problems, including the fact that the data wasn't included in
database backups and, perhaps most significantly, having the data outside the trans-
actional control of the database meant that it was possible for the LOB data, if it were
subject to modification, to become out of sync with the structured, SQL Server-based
data to which it related. In addition, when LOB data is stored in the file system, outside
the control of the database administrator, any user or application with sufficient

24

Chapter 1: Storing and Managing Unstructured Data

Windows permissions can access the LOB data files directly. This makes it a considerable
challenge to ensure that the LOB data files are accessible only to the Windows users who
have access to the associated relational data.

Enter FILESTREAM storage, introduced with SQL Server 2008, which allows us to
append a FILESTREAM attribute to a VARBINARY(MAX) data type, and so get the perfor-
mance advantages of storing LOB data on the file system, combined with the many
advantages of having that data under the control of SQL Server. In this chapter, we will
begin our exploration of the storage of LOB data, using the new FILESTREAM attribute,
covering:

•	 what we mean by structured, unstructured and semi-structured data

•	 advantages and disadvantages of storing LOB data in the database and file system

•	 what FILESTREAM offers, a first look at how it works, and strategic considerations
for its use.

Structured Data

As database professionals, we deal with data every day; we store, manage, process,
and query large volumes of data as part of our day-to-day database development and
management work. Most of the data that we handle may be regarded as structured,
meaning that it conforms fully to the formats and data models associated with the
relational database. By way of its compliance with the relational data model, such data
generally also conforms to more formal definitions of the term, structured data, which
refer to:

•	 information that has been organized to allow identification and separation of the
context of the information from its content

•	 data organized into semantic chunks or entities, with similar entities grouped together
in relations or classes, and presented in a patterned manner

25

Chapter 1: Storing and Managing Unstructured Data

•	 data that can be shared electronically with customers and suppliers, because the
structure and meaning of data has been standardized and usually determined by
a data model.

All of these definitions point to the defining characteristic of structured data: the ability
to identify and extract specific pieces of information that is included in the data. This is
usually done by adding some sort of schema or data model which explains the structure
of the data and makes it meaningful. It means we can query the data based on predeter-
mined data types and well-defined and understood relationships.

Of course, there are degrees of structure; data that one application would deem
unstructured, might be deemed structured enough by another. To demonstrate
what I mean, consider the data presented in Listing 1-1, which is a log generated by
an invoicing application.

Row Details

--- ---

01 Mike created invoice 101 dated 2010/01/13 with a note

 to notify James before shipping on fax number 456-098-0909

02 John created invoice 102 dated 2010/01/14 with a note to

 call Anna on 898-090-0909 after shipment is sent

Listing 1-1:	 Unstructured log data.

If asked whether this data is structured or unstructured, most would say "unstructured,"
and with good justification; many pieces of vital information, stored in each row as a long
text string. It is comprehensible to a human, but will be hard for software to extract those
pieces of information from the text string.

So essentially, yes, this data is unstructured but even so, if this data is used just as a log
of activities and the application does not need to query those vital pieces of information
embedded in the text string, and extract them separately, then for that business this data
is structured enough. Of course, a second application might need direct access to the

26

Chapter 1: Storing and Managing Unstructured Data

invoice date, currently embedded within the string stored in the Details column. From
this application's perspective, the data really is unstructured, and we'd need to store the
information in a slightly more structured manner, as shown in Listing 1-2.

Inv# SalesRep InvDate InvNote

---- -------- ---------- ---

101 Mike 2010/01/13 Notify James before shipping on fax number 456-098-0909

102 John 2010/01/14 Call Anna on 898-090-0909 after shipment is sent

Listing 1-2:	 Slightly more structured log data.

A third application, one that requires access to all of the individual elements in the data,
would require the data to be more structured still, in fact in the sort of form we are accus-
tomed to seeing in typical relational database tables, as shown in Listing 1-3.

Inv# SalesRep InvDate Notify Number type when

---- -------- ---------- ------ ------------ ------ ---------------

101 Mike 2010/01/13 James 456-098-0909 Fax before shipment

102 John 2010/01/14 Anna 898-090-0909 Phone after shipment

Listing 1-3:	 Structured log data.

I recently encountered a perfect example of this subtlety in a real application. It was a
data integration project for a health care system, where the source system stored the
patient address in a single field, and so the address column in the source system held
values such as "999-888, Kings Highway, Brooklyn, NY 11223." From the perspective of this
system, the data was structured enough, since the address information was used only for
mailing purpose. A mailing module picked the information from the address field and
printed the mailing label. No other part of the application touched the address column.

The target system, however, was more advanced and needed to display the location
of patients on a map, and so needed to extract individual elements of the address, such
as street name, zip code, and so on, in order to calculate the latitude and longitude of

27

Chapter 1: Storing and Managing Unstructured Data

each patient. Because the target system found the data to be unstructured, we had to
build a module that parsed the source data and produced more structured output for the
target application.

From here on, however, we are simply going to define "structured data" in general to
mean data that meets the requirements of the relational model, such that we can extract
the required information from the data easily and accurately.

Semi-structured data

Semi-structured data is a form of structured data that does not fully follow the rules and structures

associated with tables and data models of relational databases. However, they do include tags and

markups to separate and identify semantic elements and collections of records and fields within the data.

The most common example of semi-structured data is XML. An XML document contains hierarchical

data organized as elements and attributes which does not fall within the relational data model. However,

a database engine such as SQL Server can read the markup information and extract values out of an

XML document, and shred the data into one or more result sets. We won't cover semi-structured data any

further in this book.

Unstructured Data

From the previous section, it is clear that data can be considered to be in an unstruc-
tured form when it is hard to programmatically retrieve the information at the desired
level of granularity. Such data if often not associated with a schema, or has only a very
simple schema, and typical examples include images and videos. Following on from our
definition of structured data, we can simply state that unstructured data is any data that
does not meet the requirements of the relational model.

Due to the complex nature of today's business requirements, it is quite natural that appli-
cations need to handle unstructured, as well as structured, data. For example, not all the

28

Chapter 1: Storing and Managing Unstructured Data

input data is generated by manual data entry nowadays. The input data may come from
a variety of sources and, as discussed, data may be structured enough for the application
that produces the data, but may be unstructured in terms of the requirements of the
application that consumes it.

In the language of the relational database, this sort of unstructured data is a Large Object
(LOB), with Character Large Objects (CLOBs) for storing plain text data, and Binary Large
Objects (BLOBs) for binary data.

CLOB data

Many applications deal with some sort of CLOB data. For example:

•	 an email management application that stores the Base64 encoded version
of the attachments

•	 a discussion forum that stores the questions and answers discussed in the
forum threads

•	 a content management system (CMS) that stores the content of web pages
(e.g. articles) in a relational table

•	 an invoicing application that stores the notes or delivery instructions.

This sort of data does have a defined structure; for example, the input controls for a
forum application, which stores the questions and answers, generate data in a certain
markup format (e.g. HTML or RTF). When the data is to be displayed, the application
reads the data, analyzes the structure, and can recognize certain elements of the data that
require specific formatting, such as URLs.

29

Chapter 1: Storing and Managing Unstructured Data

However, in the context of our definition of structured data, this CLOB data is unstruc-
tured. It is not easy for the relational database engine to understand the content stored
in the CLOB column. For example, if a user wants to retrieve a list of all URLs in a set of
forum posts, this is not going to be easy for a relational database query.

BLOB data

BLOBs consist of "chunks" of binary data. When you record a voice note using your
personal organizer software, you are generating some BLOB data. A chunk of encrypted
binary data, or the content of an executable file, is a BLOB value. More and more applica-
tions today need to handle and store BLOB data. A few examples include:

•	 a document management system that stores different types of documents, such as
Word or Excel

•	 a product catalog application that stores the images of products

•	 a multimedia library that stores videos and music

•	 a software download website that stores setup files, executable or zip files.

Again, most BLOB data – Word or Excel documents, images, audio files, and so on – does
have a defined structure; an application that generates or consumes these files can under-
stand the content based on the associated, simple schema.

However, from the relational database perspective, BLOB data is most certainly unstruc-
tured. Even though the applications that read and write BLOB data from and into the
database understand the structure of the data, a database engine does not really under-
stand it.

30

Chapter 1: Storing and Managing Unstructured Data

Storing Unstructured Data

As discussed, most business applications need to store, manage and process unstructured
data of various shapes and sizes. Choosing the right storage design for this data will be
critical to the performance, manageability, and overall health of the application and its
database. There are two basic choices: store the LOB in the database, or store it on the file
system with a pointer to it from within the database. So, depending upon the nature of
the data, usage pattern, workload and various other factors related to the specific appli-
cation and business requirements, the designers might decide whether to keep the LOB
data within the database or outside the database.

Storing Large Objects in SQL Server

Most relational database management systems provide data types that can store LOBs.
One can simply create a table with columns of the appropriate data types and use the
programming model provided to read, write, and update the LOB data.

Pre-SQL Server 2005, unstructured data was stored in LOB data types. CLOB data was
stored in TEXT (and NTEXT for Unicode) data types. BLOB data was stored in the IMAGE
data type. These data types could store up to 2 GB of data, which was stored separately
from the relational table data.

These old LOB data types, while still available, are deprecated in SQL Server 2005
and later, in favor of the large-value data types: VARCHAR(MAX) for text data (and
NVARCHAR(MAX) for Unicode character data) and VARBINARY(MAX) for BLOB data.
Working with these new data types is much easier than working with their older counter-
parts. For example, reading from, or writing into, a VARCHAR(MAX) column is much
easier than with a TEXT column.

31

Chapter 1: Storing and Managing Unstructured Data

-- Create a table and insert a row
CREATE TABLE BlobTable
 (
 TextValue TEXT ,
 VarcharMaxValue VARCHAR(MAX)
)
INSERT INTO BlobTable
 (TextValue ,
 VarcharMaxValue
)
 SELECT 'The text data type is invalid for local variables.' ,
 'However VARCHAR(MAX) is valid'

-- Reading the first 20 characters from the TEXT column
DECLARE @val VARBINARY(16)
SELECT @val = TEXTPTR(TextValue)
FROM BlobTable
READTEXT BlobTable.TextValue @val 0 20

-- Reading the first 20 characters from the VARCHAR(MAX) column
SELECT LEFT(VarcharMaxValue, 20)
FROM BlobTable

Listing 1-4:	 Working with the new LOB data types is much easier.

All of the new LOB data types introduced in SQL Server 2005 support storage of up to
2 GB of data in a single column.

VARBINARY(10) -- Can store up to 10 Bytes
VARBINARY(8000) -- Can store up to 8000 Bytes
VARBINARY(8001) -- Error!!!
VARBINARY(MAX) -- Can store up to 2 GB of data

Listing 1-5:	 MAX identifier raises the storage capacity from 8,000 bytes to 2 GB.

32

Chapter 1: Storing and Managing Unstructured Data

Storing Large Objects in the file system

Many applications that deal with LOB data store this data outside the database, in the
file system. Under this approach, a Products table in SQL Server would simply have
an additional VARCHAR column (called, for example, ImagePath), which stores the file
system path to the image file associated with the current product, the image being stored
as an individual disk file in a designated folder.

An application that needs to retrieve the image will first read the relational data, obtain
the path to the image file, and grab the image file using file system APIs. When a new
product is added, the image file is copied to the specified folder and the path to the new
image file is inserted into the ImagePath column. When an image needs to be updated,
either the existing image file is overwritten, or a new file is copied and the path is updated
in the table.

Database or file system?

Architects of applications that work with LOBs need to decide whether to store this
data in a column within the database or as files in the file system. To a large degree, this
decision will depend on the exact nature of the data, and the business application that
uses it. Fundamentally, the size of a single LOB in SQL Server 2000 and 2005 is limited
to 2 GB. If your application needs to store, for example, high-definition movies or X-ray
films, then you may well exceed this limit, and have little choice but to store them on the
file system, where the limit, for a NTFS file system, is closer to 16 TB (unless you can
split the data into multiple 2 GB columns which, in many cases, would be impossible,
or very painful).

Another common consideration would be the coupling of the data to the application and
to other data. For an application like Flickr, the database is actually just a repository for
loosely-coupled BLOBs. It probably makes more sense to store them on the file system.

33

Chapter 1: Storing and Managing Unstructured Data

Conversely, if an application needs to store a PDF version of every quote sent to a
customer, then there is tighter coupling and it may make more sense to store the LOBs in
the database.

Regardless of the route that seems most appropriate for your application, there are advan-
tages and disadvantages to each approach, based on considerations of:

•	 transactional consistency

•	 data manageability and recoverability

•	 security

•	 performance.

We'll briefly discuss these issues in the coming sections, and further details can be
found in Paul Randal's white paper, FILESTREAM Storage in SQL Server 2008
(http://brurl.com/fs1).

Transactional consistency

One of the fundamental advantages of storing data in a relational database is that, via
the implementation of various transaction isolation levels, locking mechanisms, and so
on, the relational engine guarantees a transactionally-consistent view of the data, at any
point in time. In other words, it guarantees that transactions within SQL Server conform
to the ACID properties, and so prevents interference between transactions on the same
data, and ensures that transactional operations can succeed or fail together, as a batch.

By storing LOBs within the database, we can ensure that this transactional consistency
extends to the LOB data as well as other relational data within the database. For example,
assume that a user uploads a document (a BLOB) into a document management appli-
cation that uses SQL Server storage. The operation involves inserting a new row into a
table along with the relational data (such as the document name) and the BLOB data (the

http://brurl.com/fs1

34

Chapter 1: Storing and Managing Unstructured Data

content of the document). Operations on the BLOB column fall within the scope of any
open transactions, and a COMMIT or ROLLBACK affects the changes to the BLOB column
just like any other columns that are involved the current batch of operations (COMMIT
will save the changes and ROLLBACK will discard the changes).

Conversely, when LOB data is stored outside, SQL Server cannot ensure transactional
consistency between the relational data in the tables and the data in the file system. It is
hard, for example, to implement an architecture that rolls back file system changes when
a SQL Server transaction rolls back. This can result in situations where the relational data
and LOB data get out of sync. It is common, over time, to end up with "orphaned" files
that are not referenced from the relational data and, conversely, references to files that no
longer exist.

Data manageability and recoverability

From a data management perspective, there are several reasons why it is a lot easier to
have all the data, including LOB data, stored in the database.

Firstly, it means that when a full backup of the database is taken it will include the LOBs,
which makes restoring the data to a consistent state in the event of a disaster a much
easier task. Also, it eases the process of moving the data from one location to another.

Since it is quite easy to take differential backups and transaction log backups of databases,
we can (at least in theory) perform point-in-time restores of all data in the database,
including the LOB data. For example, in cases of accidental data loss, the DBA can return
the database to a previous state, at a point in time just before the operation took place
that erroneously removed the data.

When storing the LOBs in the file system, and only the path to the disk file in a relational
table, the backups do not contain the LOB data, and DBAs need to take separate backups
of the database and file system. When the database is to be restored on another location,
the correct version of the file system backup should also be restored. This requires careful

35

Chapter 1: Storing and Managing Unstructured Data

versioning to make sure the right file system data is restored with the right database
backup. It is also important to make sure to keep the same file system structure in
the new location so that the disk files maintain the same path as that stored in the
relational tables.

When the LOB data is stored outside the database, the relational data can be restored to
a given point in time, but not the file system changes, since the file system on its own
does not track modifications and does not allow you to roll back the changes, once the
file is saved.

Security

When LOB data is stored within the database, the security can be managed at the SQL
Server level. This reduces the administrative complexity and aligns LOB security with the
same security processes applied to the associated relational data.

If LOB data is stored outside the database, separate measures must be put in place to
secure the file system. The relational data and LOB data are disconnected (or connected
with just a weak link which stores the path to the file in a relational column), and
managing user access permissions is a major challenge.

Performance

You're probably thinking that, on almost all levels, storing LOB data in the database is
preferable to storing it in the file system. However, despite the numerous advantages
discussed so far, of storing LOB data in the database, performance is the one consid-
eration that makes it a non-feasible option for most applications.

The relational database engine is optimized to process relational data; storing and
processing huge chunks of LOB data is not always done with the same ease.

36

Chapter 1: Storing and Managing Unstructured Data

One of the big advantages that the file system can offer, when handling LOB data, is
streaming. The streaming of data refers to transferring it in a manner that allows it
to be processed as the data is transferred, rather than collecting all the data before the
processing begins. Streaming significantly increases the performance of read and write
operations on that data.

SQL Server cannot stream LOB data. When a chunk of LOB data is written, SQL Server
creates a memory buffer large enough to hold the data, accepts all the data, and only then
starts writing it into the database. Similarly, when LOB data is read, SQL Server creates
a memory buffer large enough to hold the LOB value, reads all the data into the buffer
and then sends it to the client connection that requested the data. So, to read or write a
500 MB LOB value from or to a column, SQL Server needs to allocate 500 MB of memory
buffer to read or write the value.

Exceptionally large objects, or multiple simultaneous requests to read or write LOB
data, can cause severe memory pressure and possibly result in the dreaded "insufficient
memory" error. Keep in mind that SQL Server is optimized for I/O operations involving
8 KB pages, not massive objects. In any scenario, such queries can slow down other
queries and affect overall server performance.

A piece of Microsoft research which studied the performance differences between storing
LOB data in the database and in the file system found that file system is the preferred
option for storing LOB data if the size is 1 MB or above.

To BLOB or not to BLOB?

You can find the Microsoft Research Paper, one of Jim Gray's last projects before he disappeared at sea, To

BLOB or Not To BLOB: Large Object Storage in a Database or a File System at http://brurl.com/fs2.

http://brurl.com/fs2

37

Chapter 1: Storing and Managing Unstructured Data

Enter FILESTREAM

By now it should be very clear that storing LOB data in the database offers a number of
benefits, but introduces performance challenges. Conversely, storing the LOB data in the
file system has overriding performance advantages, but fails to offer some of the basic
data integrity, security, and manageability features that are required for business data,
and which SQL Server provides.

Up to now, most people have adopted file system storage by necessity, and often struggled
to overcome the associated shortcomings. This is exactly where the new FILESTREAM
feature fits in. FILESTREAM storage, introduced in SQL Server 2008, is implemented
as an extension to the VARBINARY(MAX) data type. In other words, SQL Server imple-
ments FILESTREAM storage through VARBINARY(MAX) columns with an additional flag
indicating that the BLOB data should be stored in the FILESTREAM data container. It
allows BLOBs to be stored in a special folder on the NTFS file system, while bringing that
data under the transactional control of SQL Server. When a VARBINARY(MAX) column is
marked as a FILESTREAM column, the 2 GB storage limit SQL Server puts on large-value
types is no longer applicable.

This new FILESTREAM attribute is only available on the VARBINARY(MAX) data type.
It cannot be applied to the VARCHAR(MAX) data type. If you have large plain text values
to store, you can opt to store them in a VARBINARY(MAX) FILESTREAM column and
use the CAST(<column> AS VARCHAR(MAX)) method, if you need access to the plain
text data in a query. When accessing a CLOB stored in a FILESTREAM column using
the FILESTREAM APIs (SqlFileStream managed class or the Win32 function,
OpenSqlFileStream), you can use functions available in your programming language
of choice to convert the byte stream to plain text. For this reason, from this point on, we'll
use the generic term "BLOB" to refer to all forms of LOB data.

Note that, to access FILESTREAM data through the streaming API, you must connect to
SQL Server using Integrated Security (Windows authentication). If you connect to SQL

38

Chapter 1: Storing and Managing Unstructured Data

Server using SQL Server authentication, you will get an "Access Denied" error when you
try to open the FILESTREAM data file.

By applying the FILESTREAM attribute to a VARBINARY(MAX) column, all data in the
resulting FILESTREAM column is actually stored in a file system folder, known as the
FILESTREAM data container, which SQL Server specially configures for FILESTREAM
data storage.

The intent is to provide a "best of both worlds" solution, offering the advantages below.

•	 Excellent NTFS data streaming performance – Makes reading and writing the BLOB
data much faster.

•	 Faster client access methods – Client applications can request access to the
FILESTREAM data files directly using the Win32 API or the .NET Objects exposed
by SQL Server. FILESTREAM data can still be modified using T-SQL methods (which
is not a recommended method), but the file system API methods allow much faster
read/write access to the FILESTREAM data.

•	 Reduced overhead on SQL Server – When accessing the FILESTREAM data through
the Win32 API or .NET Classes, FILESTREAM operations no longer overload SQL
Server's internal memory.

•	 Transactional consistency – BLOB data operations happen within the context of
a transaction so, if the transaction rolls back, the relational data modifications and
BLOB changes will be rolled back.

•	 Significantly easier backup management – Though the BLOB data is still stored in
the file system, a database backup includes the FILESTREAM data as well as all the
relational data. When the backup is restored, the file system data is also restored to the
new location. This topic, along with a few caveats, will be covered in detail in Chapter
8, Backup and Restore for FILESTREAM Databases.

39

Chapter 1: Storing and Managing Unstructured Data

•	 Point-in-time restores – With FILESTREAM enabled, changes to the BLOB data in the
file system are captured in the transaction log, and the log can be backed up, enabling
DBAs to restore all the data to a state as of a specific date and time.

•	 Improved security management – Permissions can be granted or denied on a
FILESTREAM column just as for any other SQL Server columns.

There are also a few limitations arising from the use of FILESTREAM. For example,
database mirroring does not support FILESTREAM data; Transparent Data Encryption
(TDE) does not work with FILESTREAM data; and database snapshots cannot be created
for FILESTREAM filegroups. These limitations are discussed further in Chapter 10, and on
Books Online (http://brurl.com/fs3).

A first look at FILESTREAM

Chapter 2 goes into much greater depth on how FILESTREAM works, how to create new
databases and tables that can store FILESTREAM data, how to insert, update, and delete
FILESTREAM data, and so on.

However, to whet your appetite, we'll walk through a very simple example here of how to
start using FILESTREAM on an existing SQL Server instance, covering:

•	 enabling the FILESTREAM feature for a given SQL Server instance

•	 setting the access level for the FILESTREAM data

•	 adding FILESTREAM storage to an existing database

•	 adding a FILESTREAM column to an existing table

•	 inserting BLOB data into the FILESTREAM column.

http://brurl.com/fs3

40

Chapter 1: Storing and Managing Unstructured Data

FILESTREAM is a hybrid feature that requires both the Windows Administrator and the
SQL Server Administrator to perform actions before the feature is enabled. Because of
this, the configuration is often a two-step process.

The Windows Administrator manages the Windows-related configuration changes
needed for the FILESTREAM feature. For example, Windows Administrator privileges
are required to create a Windows file share for the FILESTREAM feature. The Windows
Administrator uses the SQL Server Configuration Manager to enable, disable, and
configure FILESTREAM.

The SQL Server Administrator manages the configuration changes within the bound-
aries of the given SQL Server instance. The SQL Administrator enables, disables, and
configures the FILESTREAM Access Level, either by using SQL Server Management
Studio or by running sp_configure.

Appendix A describes in great detail how to enable and configure the FILESTREAM
feature, both during a SQL Server installation and for existing instances and databases. If
you encounter any difficulties, or need further information, please refer there.

Enabling FILESTREAM

Our first step is to enable the FILESTREAM feature at the instance level. Briefly,
on the machine on which the SQL Server 2008 instance is installed, navigate as
follows (this path may change in future versions): Start | All Programs | Microsoft SQL
Server 2008 | Configuration Tools | SQL Server Configuration Manager, then select
SQL Server Services. Right-click on the appropriate instance, select Properties then
move to the FILESTREAM tab. In here, you can enable the instance for T-SQL and file
I/O streaming access.

41

Chapter 1: Storing and Managing Unstructured Data

Setting the access level

All the rest of the work can be done from within SQL Server Management Studio (SSMS),
so open it up and connect to the instance you just FILESTREAM enabled. Since we are
enabling FILESTREAM access on an instance that did not have FILESTREAM enabled
as part of the SQL Server installation process, we will also need to set the FILESTREAM
Access Level, as demonstrated in Listing 1-6.

EXEC sp_configure filestream_access_level, 2;
GO
RECONFIGURE
GO

Listing 1-6:	 Setting the FILESTREAM access level for the instance.

Here, we've enabled both T-SQL and file I/O streaming access for the instance. Alterna-
tively, by setting the filestream_access_level to 1, we could have enabled T-SQL
access only (a value of 0 means disabled).

This same process can be performed through the SSMS GUI (see Appendix A).

Adding FILESTREAM storage

Next, we need to add a FILESTREAM filegroup and FILESTREAM file (data container) to
the NorthPole database, as shown in Listing 1-7.

ALTER DATABASE NorthPole
 ADD FILEGROUP NorthPole_fs
 CONTAINS FILESTREAM;
GO

ALTER DATABASE NorthPole
 ADD FILE (
 NAME = NorthPole_fs,

42

Chapter 1: Storing and Managing Unstructured Data

 FILENAME = 'C:\ArtOfFS\Demos\Chapter1\NorthPole_fs')
TO FILEGROUP NorthPoleFS;
GO

Listing 1-7:	 Adding a FILESTREAM filegroup and data container.

Note that the C:\ArtOfFS\Demos\Chapter1 directory must exist on the appropriate
SQL Server instance machine (see Appendix A for more discussion of NTFS file system
configuration).

Adding a FILESTREAM column

Having done this, we can now create a table in this database that has a FILESTREAM
column, as shown in Listing 1-8.

CREATE TABLE [dbo].[Authors]
 (
 [AuthorID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [AuthorName] VARCHAR(50) ,
 [AuthorImage] VARBINARY(MAX) FILESTREAM
 NULL
)

Listing 1-8:	 Creating an Authors table with a FILESTREAM column.

For reasons that will be discussed in much more detail in Chapter 3, a FILESTREAM
column can be created only on a table that has a UNIQUEIDENTIFIER column with the
ROWGUIDCOL attribute. Notice, also, that the table contains an AuthorImage column of
type VARBINARY(MAX)to which we've applied the FILESTREAM attribute.

43

Chapter 1: Storing and Managing Unstructured Data

Inserting BLOB data

In Listing 1-9, we insert an image of the famous Simple-Talk author, Phil Factor, into this
column, and the image will be automatically stored in the NorthPole_fs data container,
on the file system, specified in Listing 1-7.

-- Insert the data to the table
INSERT INTO [dbo].[Authors]
 (AuthorID ,
 AuthorName ,
 AuthorImage
)
 SELECT NEWID() ,
 'PhilFactor' ,
 bulkcolumn
 FROM OPENROWSET(BULK 'C:\temp\philFactor.gif', SINGLE_BLOB) AS x

SELECT *
FROM dbo.authors

AuthorID AuthorName AuthorImage

------------------------------------ -------------------- -------------

C0B1E727-40B3-48FE-B83A-2FD6C1261695 PhilFactor 0x474946383761C8001B01F7000004...

(1 row(s) affected)

Listing 1-9:	 Inserting an image into the Authors table.

Notice that we use the NEWID() function to assign a new unique value to our AuthorID
column. We use the OPENROWSET function, with the BULK rowset provider, to read in our
image file. The SINGLE_BLOB argument specifies that the file is returned as a single-row,
single-column rowset, called bulkcolumn, of type VARBINARY(MAX). We then simply
insert this image into the AuthorImage column.

44

Chapter 1: Storing and Managing Unstructured Data

We now have an image, stored in the file system, but under the transactional control of
SQL Server, and which would be included in database backups, and so on. We are also
now ready to take advantage of the performance benefits of streaming and fast file system
API access methods when reading and modifying this data, as we will see in Chapter 2.

When to use FILESTREAM

Despite the obvious advantages of FILESTREAM to SQL Server applications that use
BLOB data, the decision of where and how to use it should be taken only after carefully
analyzing the storage requirements, data usage patterns, possible administrative
overheads, and so on.

Size of the files

The previously-referenced Microsoft Research paper, To BLOB or Not To BLOB: Large
Object Storage in a Database or a File System, suggests that, for BLOBs that are smaller than
256 KB, the best performance will probably be obtained by simply storing the data directly
in the relational tables. Files larger than 1 MB are better stored in the file system, and
managed through SQL Server using FILESTREAM. In that in-between region of 256 KB
to 1 MB, the decision of which way to go can only be taken after analyzing the specific
data usage scenarios.

Generally speaking, though, if the average size of the BLOB values that you expect
your application to process is below 1 MB, then direct storage in the database, using a
normal VARBINARY(MAX) column, is likely to perform better in most cases. However,
this may vary based on how write-intensive the workload is. Even 256 KB files that are
read/updated many times per second in a VARBINARY(MAX) column will cause memory
exhaustion. The best way to take this decision is by running some tests that involve real
workload and usage patterns, and see what fits best in your specific environment.

45

Chapter 1: Storing and Managing Unstructured Data

Data usage patterns

FILESTREAM does not support in-place (also referred to as "partial") updates of BLOB
data files. Instead, every time a BLOB value is modified, SQL Server creates an entirely
new copy of the file with the modified content, and discards the old file. The old file will
be deleted by an asynchronous garbage collector process.

If your business requirement includes making frequent changes to the BLOB data values,
then FILESTREAM may not be the right option. However, this decision should be taken
only after running some tests with the expected usage pattern and deciding whether to go
with FILESTREAM or VARBINARY(MAX) storage.

Administrative overhead

Though FILESTREAM offers a number of benefits to the database administrators, there
may be cases when it adds unacceptable administrative and storage overhead.

As discussed earlier, when you take a full database backup of the FILESTREAM-enabled
database, all the FILESTREAM data will, by default, come along with your backup. When
you restore the backup to a different location, the FILESTREAM data will be restored
as well.

This is great from a management perspective but, if you have terabytes of FILESTREAM
data, this will add a huge storage overhead to your backup files, and greatly increase the
time and server resources required to perform the backups. For example, let's say you
have a 10 GB database and 20 Terabytes of FILESTREAM data. Your SLA requires a daily
full backup of the database to be taken, but the FILESTREAM data is seldom modified.
You will be adding massively to the size and overhead of your daily full backups, with
most of the space taken up by FILESTREAM data that hasn't changed since last time.

46

Chapter 1: Storing and Managing Unstructured Data

In such cases, it probably makes sense to exploit the fact that FILESTREAM data is
stored in a separate, dedicated filegroup, and that SQL Server supports partial backups,
whereby only selected filegroups are backed up. We could take backups excluding
the FILESTREAM filegroups, and then less-frequent backups that include only the
FILESTREAM data.

In short, it is recommended that you analyze the workload and the type of data to be
processed, and undertake some performance tests before deciding whether or not to use
FILESTREAM.

Summary

As business applications become ever more versatile, the smooth handling of unstruc-
tured, LOB data, alongside the normal (and normalized) relational data is becoming an
increasingly common requirement.

Storing such data in the database (in a VARBINARY(MAX) column) offers a number of
advantages, including transactional consistency, point-in-time recovery, manageability
and better security administration. However, these benefits come with a large memory
overhead and, often, a severe performance penalty. Microsoft research shows that the file
system is the preferred storage medium for files over 1 MB in size.

Storing BLOB data in the file system offers performance benefits, taking advantage of
the streaming capabilities of NTFS, but it does not provide transactional consistency,
point-in-time recovery, security, and so on, and this is a big drawback for many business
applications.

FILESTREAM is a new storage feature introduced in SQL Server 2008. It stores the BLOB
data in the file system and allows you to take advantage of the NTFS stream capabilities.
At the same time, FILESTREAM ensures transactional consistency between the relational
data and BLOB data stored in the file system.

47

Chapter 1: Storing and Managing Unstructured Data

Furthermore, administering and safeguarding the data is much simpler, since the BLOB
data is included in normal database backups, and any modifications to that data are
included in the transaction log file, so point-in-time recovery is supported.

Any BLOB data that is under 1 MB is probably still best stored in a VARBINARY(MAX)
column, directly in the database. However, for all other BLOB data, FILESTREAM storage
is the way to go.

48

Chapter 2: Getting Started with
FILESTREAM

As we discussed in the previous chapter, FILESTREAM enables you to store BLOB data in
the file system so that you can take advantage of the streaming and caching capabilities
of NTFS. By accessing the BLOB data using the Win32 streaming APIs exposed by SQL
Server 2008, you can offload the processing overhead from SQL Server.

In this chapter, we look in detail at how FILESTREAM data is stored, and how you set up
a FILESTREAM database, table, and column. We then provide an example of inserting
data into the column.

The FILESTREAM Data Container

SQL Server stores the FILESTREAM data in a file system folder which is known as the
FILESTREAM data container. Each FILESTREAM-enabled database must have its own
unique data container. The location of the FILESTREAM data container is specified when
you create a FILESTREAM-enabled database or when you enable FILESTREAM on an
existing database.

SQL Server creates a number of subfolders in the data container to manage the
FILESTREAM data; a folder is created for each table, with one or more FILESTREAM
columns. If a table is partitioned, a folder is created for each partition. Within the folder
for each table or partition, a subfolder is created for each of the FILESTREAM-enabled
columns, to store the BLOB data.

49

Chapter 2: Getting Started with FILESTREAM

When SQL Server configures a file system folder as the FILESTREAM data container,
it creates a file named filestream.hdr, and a folder named $FSLOG. Both of these file
system objects are used by SQL Server internally and it is strongly recommended that you
do not access or modify them outside SQL Server.

The filestream.hdr file stores the internal information that SQL Server uses to manage
the BLOB data stored in the FILESTREAM data container, and to associate it with the
relational data stored in the database tables. The $FSLOG folder is used to keep track of
the changes applied on the BLOB data stored in the FILESTREAM data container, similar
to a transaction log in a SQL Server database.

It is important to remember that two databases cannot share the same file system
location to store their FILESTREAM data. It is not permitted even to use a subfolder
within the FILESTREAM data container of one database to store the FILESTREAM data
container of another database.

For example, assume that you have a FILESTREAM-enabled database named NorthPole
with a FILESTREAM data container located in C:\FS\NorthPole. Table 2-1 shows
some examples of valid and invalid FILESTREAM data container locations for another
FILESTREAM-enabled database called Southpole, assuming the NorthPole database
already exists.

FILESTREAM Data Container Comments

C:\FS\SouthPole Valid

C:\FS\NorthPole
Invalid: C:\FS\NorthPole is already used by the
SouthPole database.

C:\FS\NorthPole\
SouthPole

Invalid: C:\FS\NorthPole is already used by the
NorthPole database; therefore the data container
cannot be created as a subfolder.

Table 2-1:	 Valid and invalid FILESTREAM data container locations.

50

Chapter 2: Getting Started with FILESTREAM

Note that SQL Server does not prevent you from storing your own data in the
FILESTREAM data container; for example, you can create additional files and folders in a
FILESTREAM data container. However, you should not touch the folders and files created
by SQL Server directly; only access the FILESTREAM data container using the APIs
provided by SQL Server.

Understanding the FILESTREAM Filegroup

A SQL Server database requires a minimum of two filegroups to store its data: the data
filegroup and the log filegroup. Most real-world databases have more than one data
filegroup, usually placed on different disk drives to improve the I/O performance.

To store FILESTREAM data, a database must have a new type of filegroup known as a
FILESTREAM filegroup. A separate filegroup is needed because the FILESTREAM BLOB
data is not stored within the database; it is stored in the FILESTREAM data container. So
a FILESTREAM-enabled database needs to have at least three filegroups:

•	 a data filegroup to store relational data

•	 a log filegroup to store transactional logs

•	 a FILESTREAM filegroup to store FILESTREAM data.

As with the data filegroups, you might decide to have more than one FILESTREAM
filegroup in a database, to distribute the FILESTREAM I/O load into multiple disk
volumes. In such cases, one of those filegroups must be marked as the default filegroup.
When you create a table, you can choose the filegroup in which you want SQL Server
to store the FILESTREAM data (described later in the section Creating a database with
multiple FILESTREAM filegroups).

51

Chapter 2: Getting Started with FILESTREAM

To further understand the FILESTREAM filegroup, let's take a look at the minimal T-SQL
script that creates a FILESTREAM-enabled database (Listing 2-1).

/*01*/ CREATE DATABASE NorthPole ON
/*02*/ PRIMARY (
/*03*/ NAME = NorthPole,
/*04*/ FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole.mdf'
/*05*/), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
/*06*/ NAME = NorthPole_fs,
/*07*/ FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs')
/*08*/ LOG ON (
/*09*/ NAME = NorthPole_log,
/*10*/ FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_log.ldf')

Listing 2-1:	 Sample T-SQL script to create a FILESTREAM-enabled database.

Lines 05, 06, and 07 specify the configuration parameters for the FILESTREAM filegroup.
A closer look will highlight a few differences between a FILESTREAM filegroup definition
and the definition of a data or log filegroup.

First of all, the FILESTREAM filegroup uses the additional clause CONTAINS
FILESTREAM which tells SQL Server to treat the filegroup as a FILESTREAM filegroup.
This is important, because SQL Server needs to do some additional work to configure the
FILESTREAM filegroup.

Next, notice the value of the FILENAME parameter in line 07; while the FILENAME
parameters of data files and log files point to a disk file, for a FILESTREAM filegroup it
points to a folder. The FILESTREAM data will be stored in multiple files, with one file for
each data value. Therefore, it makes sense that the FILESTREAM filegroup points to a
folder, rather than a single file.

When you create a FILESTREAM-enabled database, SQL Server will create and configure
the folder specified as the FILESTREAM data container. It is very important to ensure
that the leaf-level folder within the path that you provide does not already exist, so that
SQL Server can go ahead and create it. Please also note that SQL Server will create only

52

Chapter 2: Getting Started with FILESTREAM

the leaf-level folder and assume that the rest of the folder structure already exists. The
operation will fail if the leaf-level folder exists, or if top level folders do not exist, or if the
folder structure specified is within the FILESTREAM data container of another database.

In the above example, C:\ArtOfFS\Demos\Chapter2\NorthPole_fs is specified as
the FILESTREAM data container. Therefore, the folder structure C:\ArtOfFS\Demos\
Chapter2 should already exist at the time of running the above script. If this folder
structure does not exist, the operation will fail with the error:

The path specified by 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs' is not in a valid directory.

It is not possible to create a FILESTREAM data container as a child folder of another
FILESTREAM data container. If you attempt, for example, to create a FILESTREAM data
container called FS2 within an existing FILESTREAM data container, SQL Server will fail
the operation with the error:

The path specified by 'C:\ArtOfFS\Demos\Chapter2\Northpole_fs\FS2' cannot be used for a

FILESTREAM container since it is contained in another FILESTREAM container.

The folder NorthPole_fs should not exist within C:\ArtOfFS\Demos\Chapter2
because SQL Server needs to create it. If the folder already exists, the operation will fail
with the error:

Cannot create file 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs' because it already exists. Change

the file path or the file name, and retry the operation.

It may be interesting to examine how SQL Server identifies whether or not the
FILESTREAM data container specified is within the FILESTREAM container of another
database. It appears that SQL Server looks for the existence of the FILESTREAM
header file in any of the upper level folders. The name of the FILESTREAM header file
is filestream.hdr. SQL Server creates this file within the FILESTREAM data container
of every FILESTREAM-enabled database when the database is created, and keeps an
exclusive lock on it as long as the database is running.

53

Chapter 2: Getting Started with FILESTREAM

What is very interesting to know is that SQL Server only checks for the filename and
not the data or a signature inside the file. So, if you create a file named filestream.
hdr and place it in one of the folders, SQL Server thinks that it is a FILESTREAM data
container and will not allow you to configure any of its subfolders as a FILESTREAM data
container. Filegroups are discussed in more detail later in this chapter, in the Tables and
FILESTREAM filegroups section.

Creating FILESTREAM-enabled Databases

A FILESTREAM-enabled database is one that has one or more FILESTREAM filegroups.
Such a database can be used to create relational tables that contain FILESTREAM
columns. BLOB data that you insert into a FILESTREAM column is stored in the
FILESTREAM data container within the specified FILESTREAM filegroup.

You can enable FILESTREAM when you create a database, or you can enable it on an
existing database. However, before you do either, you must ensure that the FILESTREAM
feature is enabled and correctly configured at the SQL Server instance level. Detailed
information about how to do this is provided in Appendix A: Configuring FILESTREAM on
a SQL Server Instance.

Note that the configuration demonstrated in this chapter, when creating a new
FILESTREAM-enabled database, will get you started, but is rather basic and probably not
suitable for a production deployment. In Chapter 7, we discuss how to adapt filegroup
architectures for very large FILESTREAM databases. In this chapter, we also don't
consider any aspects of the configuration of the underlying file system; see Chapter 12 for
a discussion of this topic.

Creating a new FILESTREAM-enabled database
Once you have ensured that the SQL Server instance is FILESTREAM enabled, you can
create a new FILESTREAM-enabled database. It is possible to do this using either SSMS
or T-SQL.

54

Chapter 2: Getting Started with FILESTREAM

Using SSMS to create a new FILESTREAM-enabled database

When creating a FILESTREAM-enabled database using SSMS, you create the database
in the usual way, but then there are two additional steps: creating a FILESTREAM
filegroup for the new database, and adding a FILESTREAM data file that points to the
FILESTREAM filegroup.

You create the filegroup using the Filegroups page of the New Database dialog box. You
will see a Filestream section in the lower half of the page, where you can create one or
more FILESTREAM filegroups for the new database being created, as shown in Figure 2-1.

Figure 2-1:	 Adding FILESTREAM filegroups to a database.

55

Chapter 2: Getting Started with FILESTREAM

Next, you add a new file to the database to point to the FILESTREAM filegroup. You do
this on the General tab. The File Type of this file should be set to the Filestream Data file
type and should point to a valid FILESTREAM filegroup, as shown in Figure 2-2.

Note that under SQL Server 2008 and 2008 R2, only one FILESTREAM data file can be
added to a FILESTREAM filegroup. This limitation has been removed in SQL Server 2012
which allows creating more than one FILESTREAM data file per FILESTREAM filegroup.

Figure 2-2:	 Adding a Filestream Data-type file to a database.

56

Chapter 2: Getting Started with FILESTREAM

When you select Filestream Data, the Filegroup column is automatically filled with
the name of the default FILESTREAM filegroup specified in the Filegroups page. If
your database has more than one FILESTREAM filegroup and you want to change the
filegroup associated with a newly-added FILESTREAM data file, you can do it by selecting
a different filegroup from the drop-down control. However, this can be done only at the
time of adding a new FILESTREAM data file into the database. Once the changes are
saved, it cannot be modified further.

There is something more to note here. When adding a FILESTREAM data file to the
database, the Path column should point to the folder in which the FILESTREAM data
container for the database will be created, as shown in Figure 2-3. Note that you specify
the parent folder of the data container in Path. SSMS creates a subfolder in the parent
folder for the FILESTREAM data container, with the same name as the FILESTREAM
logical name of the data file.

Figure 2-3:	 Specifying the FILESTREAM data file path.

57

Chapter 2: Getting Started with FILESTREAM

In this example, a new folder named NorthPole_fs will be created in C:\ArtOfFS\
Demos\Chapter2. SQL Server will configure C:\ArtOfFS\Demos\Chapter2\
NorthPole_fs as the FILESTREAM data container (see The FILESTREAM Data
Container, earlier in this chapter).

When using SSMS to create a FILESTREAM-enabled database, the name of the
FILESTREAM data container folder will always be the logical name of the filegroup. When
creating a FILESTREAM-enabled database using T-SQL, you can explicitly specify a folder
name which can be different from the logical filegroup name.

Using T-SQL to create a FILESTREAM-enabled database

In the previous section we saw how to create a FILESTREAM-enabled database using
SSMS. We will now do the same using T-SQL, so let's look in more detail at the minimum
script for creating a FILESTREAM-enabled database.

-- If the 'NorthPole' exists, drop it
IF DB_ID('NorthPole') IS NOT NULL BEGIN
 DROP DATABASE NorthPole;
END

-- Create NorthPole database
CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_log.ldf')

Listing 2-2:	 T-SQL code to create a FILESTREAM-enabled database.

58

Chapter 2: Getting Started with FILESTREAM

The script is the same one we would use to create a regular database, except for the
following part that creates an additional filegroup to store the FILESTREAM data.

FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs')

Listing 2-3:	 Code snippet to show the definition of a FILESTREAM filegroup.

The first line in the above listing creates a FILEGROUP named NorthPole_fs. The
syntax is the same as creating or adding a regular data or log filegroup to a database. The
clause CONTAINS FILESTREAM is new in SQL Server 2008; it specifies that the filegroup
is to be added as a FILESTREAM filegroup. The next line, NAME = NorthPole_fs,
specifies the logical name of the filegroup.

The FILENAME parameter in the third line specifies the file system location to be
configured as the FILESTREAM data container. When creating a new FILESTREAM-
enabled database using T-SQL, you must provide the complete path to the FILESTREAM
data container (C:\ArtOfFS\Demos\Chapter2\NorthPole_fs in the above example).
The parent folder (C:\ArtOfFS\Demos\Chapter2) must exist at the time of executing
the T-SQL script; however, the last subfolder in the path (NorthPole_fs) must not exist
– if the folder already exists, the T-SQL script will fail, as described previously. Remember,
you must not tamper with the FILESTREAM data container folder. Any change you make
directly to this folder could corrupt your database.

Note also the following, with regard to a FILESTREAM filegroup:

•	 it cannot be named PRIMARY

•	 SIZE, MAXSIZE, and FILEGROWTH attributes are inapplicable

•	 it cannot point to a UNC path; it must refer to a path on the local server,
a storage area network or an iSCSI target

•	 it can be placed on a compressed disk volume.

59

Chapter 2: Getting Started with FILESTREAM

Enabling an existing database for FILESTREAM

We have seen how to add FILESTREAM storage capabilities when creating a new
database. Next, we will examine the process of adding FILESTREAM capabilities to an
existing database.

When the FILESTREAM feature is enabled at the SQL Server instance level, the next step
is to check whether the database already has a FILESTREAM filegroup, by running the
query in Listing 2-4.

IF EXISTS (SELECT *
 FROM sys.filegroups
 WHERE type = 'FD')
 BEGIN
 PRINT 'FILESTREAM Filegroup Exists!'
 END
ELSE
 BEGIN
 PRINT 'FILESTREAM Filegroup does not exist!'
 END

Listing 2-4:	 Checking for a default FILESTREAM filegroup on the database.

You can then use T-SQL in Listing 2-5 to add a new FILESTREAM filegroup to
the database.

ALTER DATABASE NorthPole
ADD FILEGROUP NorthPole_fs
CONTAINS FILESTREAM ;
GO

Listing 2-5:	 Adding a new FILESTREAM filegroup to a database.

60

Chapter 2: Getting Started with FILESTREAM

Once the FILESTREAM filegroup has been added to the database, you can add a
FILESTREAM file (which points to the FILESTREAM data container) using the T-SQL
command in Listing 2-6.

ALTER DATABASE NorthPole
ADD FILE (
NAME = NorthPole_fs,
FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs')
TO FILEGROUP NorthPole_fs ;
GO

Listing 2-6:	 Adding a FILESTREAM data container to a database.

The database is now FILESTREAM enabled. We can go ahead and start creating tables
that contain FILESTREAM data.

Creating a Table with FILESTREAM Columns

Once we have a FILESTREAM-enabled database, we are ready to go ahead and create
tables containing FILESTREAM columns. A FILESTREAM column is a VARBINARY (MAX)
column that has the FILESTREAM attribute enabled.

Using SSMS table designer to create a table with
FILESTREAM columns

You will be surprised if you try to create a table with FILESTREAM columns using SSMS
table designer in SQL Server 2008 and SQL Server 2008 R2 – it appears that the SSMS
team missed this feature, as there is no way to do this in the latest version at the time of
writing (SQL Server 2012). You can create a table with a VARBINARY (MAX) column, but
there is no way to set the FILESTREAM flag on the column.

61

Chapter 2: Getting Started with FILESTREAM

Therefore, the recommended method for creating tables with FILESTREAM columns
 is to write the CREATE TABLE statements using T-SQL (as described in the following
section). Alternatively, you can do this in a two-step process: create all columns except
the FILESTREAM columns using the table designer, and then use T-SQL ALTER TABLE
statements to create the FILESTREAM column (see Using T-SQL to add FILESTREAM
columns to an existing table, later in this chapter).

Using T-SQL to create a table with FILESTREAM
columns

The script in Listing 2-7 creates a table with a FILESTREAM column. The FILESTREAM
column is created by adding the FILESTREAM attribute to the VARBINARY(MAX) column
called ItemImage. Only VARBINARY(MAX) columns can be used for FILESTREAM
storage.

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)

Listing 2-7:	 Creating a table with a FILESTREAM column.

Notice that FILESTREAM is not a data type; it is an attribute that you can set on a
VARBINARY(MAX) column. Setting this attribute adds FILESTREAM storage capabilities
to the column.

62

Chapter 2: Getting Started with FILESTREAM

The ItemID column in the above listing is very significant. A FILESTREAM column
can be created only on a table that has a UNIQUEIDENTIFIER column marked as
ROWGUIDCOL. The limitations for the ROWGUIDCOL are as follows:

•	 cannot allow NULL

•	 should have either the UNIQUE attribute or be the entire primary key

•	 needs to be UNIQUEIDENTIFIER data type

•	 cannot be modified or dropped as long as FILESTREAM columns exist in the table.

SQL Server will create a subfolder in the FILESTREAM data container for each table that
contains a FILESTREAM column. Within each table subfolder, another subfolder will
be created for each FILESTREAM-enabled column in the table. If the table has multiple
partitions, a folder will be created for each partition.

Listing 2-8 shows the structure of the FILESTREAM data container after creating a
database and table using the example scripts in this chapter (the folder names have been
shortened to simplify the listing). The folder for the table and the FILESTREAM column
are always GUID values, so these folder names will be different on your computer if you
have followed the example.

C:\
 |-ArtOfFS\
 |-Demos\
 |-Chapter2\
 |-NorthPole_fs\ -- FILESTREAM Data Container
 |-$FSLOG\ -- Log Folder
 |-filestream.hdr -- Metadata File
 |-6488cba4…6eaad3\ -- Root folder for "Items" table
 |-7761f220…b204f1\ -- Folder for "ItemImage" column

Listing 2-8:	 Example FILESTREAM data container structure.

63

Chapter 2: Getting Started with FILESTREAM

Note that the file locations in which SQL Server stores the BLOB data are irrelevant to us,
because no direct access to these files is recommended. Any read/write operation to the
BLOB data should be done either through T-SQL (in which you access the BLOB data as
if it is a VARBINARY(MAX) column in the table) or through the Win32 API (in which you
access the BLOB data using a logical identifier). This chapter provides examples using
T-SQL, and the Win32 API is discussed further in Chapter 3: Accessing FILESTREAM Data
from Client Applications.

Using T-SQL to add FILESTREAM columns to an
existing table

Adding a FILESTREAM column to an existing table can be simple or complex, depending
upon the current schema of the table. In the simplest case, the ALTER TABLE command
could be as shown in Listing 2-9.

ALTER TABLE [dbo].[Items]
ADD ItemImage VARBINARY(MAX) FILESTREAM NULL
GO

Listing 2-9:	 ALTER TABLE T-SQL script to add a FILESTREAM column to an existing table.

This script adds a new FILESTREAM column named ItemImage to the Items table.
For the script to execute successfully, the table must already have a UNIQUEIDENTIFIER
column that meets all requirements outlined above.

In most cases, you can look into the table schema to verify whether or not the table
already has a UNIQUEIDENTIFIER column with the required characteristics. The easiest
way may be to right-click on the table in SSMS and generate the CREATE script for the
table. You can see the current attributes of all the columns in the script output.

64

Chapter 2: Getting Started with FILESTREAM

There may be times when you are required to check the table schema programmatically.
You can query the system metadata tables to see if a table has all the required character-
istics to have a FILESTREAM column. Querying is_rowguidcol in sys.columns will
tell you whether the column is marked as ROWGUIDCOL. Similarly, the is_nullable
column can be queried to see if the column allows NULL values. Additional infor-
mation, such as whether the column has a unique constraint or single column primary
key, can be retrieved from sys.key_constraints, sys.indexes and sys.index_
columns. Listing 2-10 shows the T-SQL code to find out whether the Items table has a
ROWGUIDCOL with the required attributes to have FILESTREAM columns.

IF EXISTS (SELECT *
 FROM sys.key_constraints sc
 INNER JOIN sys.indexes si
 ON sc.unique_index_id = si.index_id
 AND si.object_id = OBJECT_ID('items')
 INNER JOIN (SELECT * ,
 COUNT(*) OVER (PARTITION BY index_id,
 object_id) AS ColCount
 /* number of columns in the index */
 FROM sys.index_columns
) ic ON ic.index_id = si.index_id
 AND ic.object_id = si.object_id
 INNER JOIN sys.columns c
 ON c.column_id = ic.column_id
 AND c.object_id = ic.object_id
 AND c.is_rowguidcol = 1 -- ROWGUIDCOL
 AND c.is_nullable = 0 -- NOT NULL
 WHERE is_unique_constraint = 1 -- UNIQUE constraint
 OR (is_primary_key = 1
 AND ColCount = 1
) -- SINGLE COLUMN Primary Key
)
 BEGIN
 PRINT 'Table can have FILESTREAM columns'
 END
ELSE
 BEGIN
 PRINT 'Table is not ready to have FILESTREAM columns'
 END

Listing 2-10:	 Checking whether a table is FILESTREAM ready.

65

Chapter 2: Getting Started with FILESTREAM

If the table already has a UNIQUEIDENTIFIER column with all the required charac-
teristics, you can simply go ahead and add the FILESTREAM column using the ALTER
TABLE script in Listing 2-9. However, if the table does not have a UNIQUEIDENTIFIER
column then you need to add one, with all the required attributes. Listing 2-11 shows how
to do this.

ALTER TABLE [dbo].[Items]
ADD ItemID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE
GO

Listing 2-11:	 Adding a UNIQUEIDENTIFIER column with all the required attributes.

A third possible outcome is that the table already has a UNIQUEIDENTIFIER column, but
it does not have all the required attributes. For example, the column may allow NULLS,
or it may not be marked as a ROWGUIDCOL, and so on. Depending upon your design
requirements, you could either add a new column with the required attributes, as shown
in Listing 2-11, or you could change the existing column, as shown in Listing 2-12; note,
though, that a table can have only one ROWGUIDCOL.

-- Create a table with a UNIQUEIDENTIFIER Column
CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50)
)

-- Alter the UNIQUEIDENTIFIER column to NOT NULL
ALTER TABLE Items
ALTER COLUMN ItemID UNIQUEIDENTIFIER NOT NULL

-- Add a UNIQUE Constraint
ALTER TABLE Items
ADD CONSTRAINT IX_ItemID UNIQUE(ItemID)

-- Create a ROWGUIDCOL
ALTER TABLE Items
ALTER COLUMN ItemID ADD ROWGUIDCOL

66

Chapter 2: Getting Started with FILESTREAM

--NOT NULL UNIQUE

-- Add FILESTREAM column
ALTER TABLE [dbo].[Items]
ADD ItemImage VARBINARY(MAX) FILESTREAM NULL

Listing 2-12:	 Configures a UNIQUEIDENTIFIER column to make the table FILESTREAM ready.

Converting VARBINARY(MAX) columns to
FILESTREAM and vice versa

One of the common requirements found on environments where an older version
of SQL Server is migrated to SQL Server 2008 or later is to convert the existing
VARBINARY(MAX) columns to FILESTREAM. It is also quite possible that you would want
to convert a FILESTREAM column to VARBINARY(MAX), for some reason. For example,
if it turns out that most of the values being stored in the FILESTREAM column are small
(less than 1 MB) then it may be beneficial to convert the column to VARBINARY(MAX),
since FILESTREAM columns only perform better for larger data. However, this is a
decision that can be taken only after performing adequate performance tests.

Unfortunately, changing the FILESTREAM attribute is not just a simple metadata
operation; SQL Server does not permit you to change the FILESTREAM attribute of an
existing column (the ALTER COLUMN command cannot SET or CLEAR the FILESTREAM
flag on a column).

When you change a VARBINARY(MAX) column to FILESTREAM, the data in the column
needs to be moved to the FILESTREAM data container in the NTFS. Similarly, when the
FILESTREAM attribute is removed, the FILESTREAM data should be moved from the file
system into the data files of the database. That explains why SQL Server does not allow
you to modify the FILESTREAM flag of a VARBINARY(MAX) column.

67

Chapter 2: Getting Started with FILESTREAM

As such, the following steps are required, in case you want to convert an existing
VARBINARY(MAX) column to FILESTREAM.

1.	 Create a new VARBINARY(MAX) column with the FILESTREAM attribute.

2.	 Copy the data from the VARBINARY(MAX) column to the FILESTREAM column using
an UPDATE statement. This will create a FILESTREAM file for each non-NULL value
being copied to the new column.

3.	 Drop the original VARBINARY(MAX) column.

4.	 Rename the new FILESTREAM column to the original name.

The T-SQL script in Listing 2-13 demonstrates how to do this.

-- Add FILESTREAM column
ALTER TABLE [dbo].[Items]
ADD ItemImage_New VARBINARY(MAX) FILESTREAM NULL

-- Copy data to the new column
UPDATE [dbo].[Items] SET
 ItemImage_New = ItemImage

-- Drop the original column
ALTER TABLE [dbo].[Items]
DROP COLUMN ItemImage

-- Rename the new column to original name
EXECUTE sp_rename
 @objname = '[dbo].[Items].[ItemImage_New]',
 @newname = 'ItemImage',
 @objtype = 'COLUMN'

Listing 2-13:	 Altering a VARBINARY(MAX) column to a FILESTREAM column.

A similar approach can be used to change a FILESTREAM column to a regular
VARBINARY(MAX) column.

68

Chapter 2: Getting Started with FILESTREAM

Note that, after deleting the FILESTREAM column, the table will still be associated with
the FILESTREAM filegroup. Even if you delete all the FILESTREAM columns and try
to drop the FILESTREAM file or filegroup, you will get an error stating that the file or
filegroup is not empty. After dropping all the FILESTREAM columns, you have to set
FILESTREAM_ON to NULL, using ALTER TABLE … SET (FILESTREAM_ON = "NULL").

If you have created FILESTREAM columns on a table and later on decide to move back
to VARBINARY(MAX), you might also want to drop the GUID column you created on
the table. This is relevant in cases where the GUID column was added only to fulfill the
FILESTREAM requirement.

Tables and FILESTREAM filegroups

Each table that contains FILESTREAM columns must be associated with at least one
FILESTREAM filegroup. A table can be associated with more than one FILESTREAM
filegroup if it is partitioned.

As discussed earlier, depending upon your design requirements, all tables can be
associated with a single FILESTREAM filegroup, or they can each be associated with
a separate filegroup (or some combination). This decision may be made based on the
FILESTREAM load that you expect to have in each table; using separate filegroups can
distribute the FILESTREAM I/O load if they are located on different devices.

You can specify the FILESTREAM filegroup in which you would like to store the
FILESTREAM data when you create a table. If you do not specify the FILESTREAM
filegroup, SQL Server will associate the default FILESTREAM filegroup with that table
and all the FILESTREAM data for that table will be stored there. When a table is
associated with a FILESTREAM filegroup, all the FILESTREAM data from all
FILESTREAM columns that exist in that table will go to the same filegroup. It is not
possible to configure two FILESTREAM columns in the same table to store their data in
two separate FILESTREAM filegroups.

69

Chapter 2: Getting Started with FILESTREAM

Listing 2-7 demonstrated how to create a FILESTREAM-enabled table called Items
that uses the default FILESTREAM filegroup. If you do not want to use the default
FILESTREAM filegroup, you use the FILESTREAM_ON clause of the CREATE TABLE
statement to specify the filegroup, as shown in Listing 2-14.

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
) FILESTREAM_ON [NorthPole_fs]

Listing 2-14:	 Creating a table with FILESTREAM columns using a specified filegroup.

For an example that shows how to change the FILESTREAM filegroup associated with an
existing table, see the section Creating a database with multiple FILESTREAM filegroups,
later in this chapter.

FILESTREAM filegroup queries

There are some system views that you can use to query FILESTREAM-related information
on your SQL Server 2008 database. We will see many of them in the coming chapters, but
a couple of examples are included here.

You might need to find out the FILESTREAM filegroup that is associated with a specific
table. You can do this by querying the catalog view sys.data_spaces as shown in
Listing 2-15.

70

Chapter 2: Getting Started with FILESTREAM

SELECT d.name AS [FILESTREAM Filegroup]
FROM sys.tables t
 INNER JOIN sys.data_spaces d ON t.filestream_data_space_id = d.data_space_
id
WHERE t.name = 'Items'

/*
FILESTREAM Filegroup

NorthPole_fs
*/

Listing 2-15:	 Retrieving the FILESTREAM filegroup associated with a table.

Listing 2-16 queries the catalog view sys.filegroups and retrieves the default
FILESTREAM filegroup of the current database.

SELECT name
FROM sys.filegroups
WHERE type_desc = 'FILESTREAM_DATA_FILEGROUP'
 AND is_default = 1
/*
name

NorthPole_fs
*/

Listing 2-16:	 Retrieving the FILESTREAM filegroup of the current database.

FILESTREAM Data Manipulation Using T-SQL

We have so far spent quite some time discussing FILESTREAM-enabled databases,
FILESTREAM filegroups, and tables with FILESTREAM columns. Enough DDL for
now! It is time to see some DML operations.

71

Chapter 2: Getting Started with FILESTREAM

A T-SQL batch or stored procedure can access FILESTREAM columns as if they are
regular VARBINARY(MAX) columns. However, accessing large BLOB data stored in a
FILESTREAM column from T-SQL does not perform well, for the reasons below.

•	 One of the features that FILESTREAM offers is the I/O streaming capability for faster
FILESTREAM operations. When accessing FILESTREAM data through T-SQL, the
benefits of streaming I/O are not available.

•	 When accessing FILESTREAM data using T-SQL, SQL Server memory is used
for buffering the FILESTREAM data. This will add memory overhead to the SQL
Server instance.

•	 To T-SQL, a FILESTREAM column appears as a VARBINARY(MAX) column with a
2 GB size limitation. Therefore, if the data stored in the FILESTREAM column is
larger than 2 GB, T-SQL can only access the first 2 GB of it.

Therefore, for best performance and optimum usage of the SQL Server resources,
FILESTREAM data should not generally be accessed using T-SQL. Instead, we should
use the streaming APIs exposed by SQL Server, as described in Chapter 3: Accessing
FILESTREAM Data from Client Applications.

However, as always, there are exceptions to the rule. Most significantly, unless the
FILESTREAM column is assigned a default value, then a client application has to execute
a T-SQL INSERT statement in order to add a new row into a FILESTREAM-enabled
table, rather than use the streaming APIs. The reason for this is that streaming access
can be made only to rows that contain non-NULL BLOB data in the FILESTREAM
column. So, T-SQL INSERT statements on FILESTREAM-enabled tables usually store
dummy VARBINARY data in the FILESTREAM column, or a default value can be set on
the FILESTREAM column. For example, we could insert a dummy value, or use a default
value, of 0x. This will create a zero-length file, which can then be replaced by actual
FILESTREAM BLOB data using streaming I/O (or T-SQL).

72

Chapter 2: Getting Started with FILESTREAM

Beyond this, there are a few cases where it is acceptable to access and manipulate data
using T-SQL. In most cases, it is fine to store small BLOB data values in a FILESTREAM
column and retrieve it using T-SQL. The question you might ask now is, "What size is
considered to be small?" There is no absolute definition but, generally speaking, anything
below 1 MB may be considered to be small; please refer to the Microsoft Research Paper
available at http://brurl.com/fs2 for a more in-depth discussion that demonstrates
how the BLOB size affects performance when stored inside the database as well as in the
file system. If the BLOB data being stored, updated, or retrieved from the FILESTREAM
storage is large (generally speaking, bigger than 1 MB) it is not advisable to manipulate the
data using T-SQL.

The following operations require T-SQL because there are no equivalent operations in
the streaming APIs:

•	 deleting rows from a table with FILESTREAM columns

•	 truncating a FILESTREAM-enabled table

•	 updating one or more FILESTREAM columns to NULL.

Inserting a row with FILESTREAM data

We're going to walk through an example of creating a new FILESTREAM column
and then inserting an image into that column using T-SQL. We'll then explore the
contents of the FILESTREAM data container, in order to gain some insight into how
this data is stored.

Please note, right from the start, that this example is for illustrative and learning purposes
only. Firstly, the most benefit is gained from the FILESTREAM feature when accessing it
using the streaming APIs instead of T-SQL, as we'll discuss in Chapter 3. Secondly, you
would never, in a production system, delve directly into the contents of the FILESTREAM
data container, as we will do here.

http://brurl.com/fs2

73

Chapter 2: Getting Started with FILESTREAM

With this in mind, let's get started! If you have followed all the sample scripts so far
and executed them in SSMS, you will have a FILESTREAM-enabled table containing
a FILESTREAM column. So, before we move ahead with storing BLOB data in the
FILESTREAM column of our table, let us rebuild it to make sure that everything is set up
correctly (Listing 2-17).

-- Drop the table if exists
IF OBJECT_ID('Items', 'U') IS NOT NULL
 BEGIN
 DROP TABLE Items
 END
GO

-- Create the table
CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)
GO

Listing 2-17:	 Creating a table with a FILESTREAM column.

SQL Server 2005 enhanced the OPENROWSET() function with a very powerful attribute:
BULK. The BULK attribute can be used to load the content of an image file on disk into a
VARBINARY(MAX) column, and then insert it into a FILESTREAM column.

We'll use the BULK attribute to load the image of a Microsoft mouse (Figure 2-4) into the
FILESTREAM column of the Items table. (You can find this image in the sample image
download file available at http://brurl.com/fs4 and extract it into C:\TEMP folder if you
do not want to change the code given in the sample snippet.)

http://brurl.com/fs4

74

Chapter 2: Getting Started with FILESTREAM

Figure 2-4:	 Image of Microsoft mouse to be loaded into a FILESTREAM column.

Note again that, in most real-world scenarios, we would not insert this image directly
using T-SQL. Instead, we'd insert a record with a dummy (generally 0x) value into the
FILESTREAM column, and then update the column with the required image using the
streaming APIs.

Listing 2-18 shows the T-SQL script to load the image.

-- Declare a variable to store the image data
DECLARE @img AS VARBINARY(MAX)

-- Load the image data
SELECT @img = CAST(bulkcolumn AS VARBINARY(MAX))
FROM OPENROWSET(BULK 'C:\temp\MicrosoftMouse.jpg', SINGLE_BLOB) AS x

-- Insert the data to the table
INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)
 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 @img

Listing 2-18:	 Loading the content of a disk file into a VARBINARY(MAX) column and inserting

into a FILESTREAM column.

75

Chapter 2: Getting Started with FILESTREAM

Loading the content to the VARBINARY(MAX) variable is unnecessary in the above
example. This additional step was added to make the code easier to follow. Listing 2-19
shows another version of the code that does not use a staging variable, but instead inserts
the data directly into the table.

-- Insert the data to the table
INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)
 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 CAST(bulkcolumn AS VARBINARY(MAX))
 FROM OPENROWSET(BULK 'C:\temp\MicrosoftMouse.jpg', SINGLE_BLOB) AS x

Listing 2-19:	 Loading a disk file directly into a FILESTREAM column.

So, where did the data go? Well, the data we just loaded into the FILESTREAM column
goes to the FILESTREAM data container. The exact content of the source file is copied
to the correct location within the FILESTREAM data container; when SQL Server stores
BLOB data in the FILESTREAM data container, an exact copy of the original binary chunk
is stored in the file system. SQL Server does not change the content; nothing is added,
modified, or removed. Also, there is a specific location for every FILESTREAM column in
the database. Listing 2-20 shows the file system map.

C:\
 |-ArtOfFS\
 |-Demos\
 |-Chapter2\
 |-NorthPole_fs\ -- Filestream Data Container
 |-$FSLOG\ -- Log Folder
 |-filestream.hdr -- Metadata File
 |-5a032731…dfeff9\ -- Root folder for "Items" table
 |-e943c1e6…5fc1f5\ -- Folder for "ItemImage" column

Listing 2-20:	 Sample FILESTREAM data container structure.

76

Chapter 2: Getting Started with FILESTREAM

So, in this example, the image that was loaded into the FILESTREAM column of the
Items table is stored in the file system folder e943c1e6…5c1f5. Note that the name of
the folder may be different if you are following this example on your computer, but the
hierarchy will be the same.

Let's get adventurous and explore this folder. But before that, a statutory warning!

In a production system, never touch the FILESTREAM files directly!

Never update the FILESTREAM data directly. I am showing this here only for demonstration purposes,

and it should never be done on a production system. If you do, you may corrupt your database. The

FILESTREAM data files should be accessed only using the Win32 interface exposed by SQL Server, as

explained in Chapter 3: Accessing FILESTREAM Data from Client Applications.

Bearing in mind the risks of playing with the FILESTREAM data container, let's go ahead
and do it anyway, as it will shed some light on how the files are stored in the file system. If
we navigate to the file system location for the ItemImage column, we will see something
very similar to Figure 2-5.

Figure 2-5:	 The contents of a FILESTREAM data container.

77

Chapter 2: Getting Started with FILESTREAM

A new file has been created inside the subfolder that SQL Server created for the
ItemImage column. The content of the file will be the same as the content of the
original file. To make sure that we don't corrupt the database, we'll copy this file to
another folder and open it in MS Paint to view its contents. The file opens correctly
(Figure 2-6). This indicates that SQL Server stores the content of the file "as is" in the
FILESTREAM data file.

Figure 2-6:	 Opening the FILESTREAM data in MS Paint.

78

Chapter 2: Getting Started with FILESTREAM

Updating and deleting FILESTREAM data

Only rarely will you modify FILESTREAM data using T-SQL, since it is much more
efficient to do it using the streaming APIs, as demonstrated in Chapter 3. Note that SQL
Server does not support a partial update to the FILESTREAM data. If you want to make
changes to your BLOB data, the entire content must be replaced.

However, it is more common to delete FILESTREAM data from a column by setting it to
NULL, using T-SQL.

UPDATE Items SET
 ItemImage = NULL

Listing 2-21:	 Updating a FILESTREAM column to NULL to delete the data.

The BLOB file is not removed from the FILESTREAM data container immediately. This
is done by a garbage collector background thread, so there is a delay before the physical
file is deleted from the file system. You can force a garbage collection using the CHECK-
POINT command but that does not guarantee that the garbage collector will remove the
unwanted file. The garbage collector will remove the unwanted FILESTREAM data files
only after the transaction log is truncated past the log entry that created the garbage files.

If you intend to delete the entire row containing the FILESTREAM data from the table,
a regular DELETE command will delete the row from the table and remove all the
FILESTREAM data associated with that record from the FILESTREAM data container.
Again, there may be a delay before the physical data is deleted from the data container by
the garbage collector.

79

Chapter 2: Getting Started with FILESTREAM

FILESTREAM and triggers

Just like other columns, FILESTREAM columns are accessible from within DML
triggers. The FILESTREAM columns can be accessed from a trigger in the same way as
a regular VARBINARY(MAX) column. DML triggers get fired even when modifying the
FILESTREAM data using Win32 I/O streaming.

It is not good practice to print debug information from a trigger. However, for the
purpose of showing that the FILESTREAM columns are accessible from a trigger, we'll
create an INSERT trigger that prints the size of the FILESTREAM data value being
inserted (Listing 2-22).

CREATE TRIGGER TGR_Items ON dbo.Items
 AFTER INSERT
AS
 BEGIN
 DECLARE @size INT
 SELECT @size = DATALENGTH(ItemImage)
 FROM INSERTED
 PRINT 'FILESTREAM Size :' + STR(@size)
 END

Listing 2-22:	 An INSERT trigger that prints the size of the FILESTREAM data value being inserted.

Now we'll insert a new record into the FILESTREAM column of the Items table using the
script in Listing 2-23.

-- Insert the data to the table

INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)

80

Chapter 2: Getting Started with FILESTREAM

 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 CAST(bulkcolumn AS VARBINARY(MAX))
 FROM OPENROWSET(BULK 'C:\temp\MicrosoftMouse.jpg', SINGLE_BLOB) AS x
/*
OUTPUT From Trigger:

FILESTREAM Size : 2288
*/

Listing 2-23:	 Inserting a row into the Items table with FILESTREAM data.

The code within the trigger prints the size of the FILESTREAM data value when the new
value is inserted.

Advanced FILESTREAM DDL

In this section, we'll briefly review some slightly more advanced requirements for
FILESTREAM-enabled databases and tables, namely using FILESTREAM with partitioned
tables, and creating databases with multiple FILESTREAM filegroups, for scalability.

The FILESTREAM data container and partitioned
tables

We saw earlier that SQL Server creates a folder at the root of the FILESTREAM data
container for every FILESTREAM-enabled table in the FILESTREAM database. If a table is
partitioned, a folder will be created for every partition in the table. Within each of these
folders, a subfolder will be created for every FILESTREAM column in the table.

81

Chapter 2: Getting Started with FILESTREAM

Let's create a partitioned table and see this in action. First, we'll drop the table we created
earlier by running the script shown in Listing 2-24.

IF OBJECT_ID('Items', 'U') IS NOT NULL
 BEGIN
 DROP TABLE Items
 END
GO

Listing 2-24:	 Dropping the Items table.

When you drop a table with FILESTREAM columns, the FILESTREAM data container
for that table is removed from the FILESTREAM data container. Note, however, that
this is done by a garbage collector and you might experience some delay in getting the
file removed.

If we now go to the FILESTREAM data container and take a look at the content of the
folder, the FILESTREAM folders have been removed and the folder is empty except for the
metadata objects (Figure 2-7).

Figure 2-7:	 Verifying that the FILESTREAM data container contains only metadata.

82

Chapter 2: Getting Started with FILESTREAM

Now we'll create a partitioned table. The script in Listing 2-25 creates a new version of
the Items table with three partitions. (Remember that the aim of this script is to create a
FILESTREAM table with three partitions for demonstration purposes; the way this table is
partitioned does not make much business sense.)

-- Create partition function
CREATE PARTITION FUNCTION
ItemPartitionFn (INT)
AS RANGE RIGHT FOR VALUES (1, 2) ;

-- Create partition scheme for ItemID
CREATE PARTITION SCHEME
ItemPartitionSch
AS PARTITION ItemPartitionFn ALL TO ([PRIMARY]) ;

-- Create partition scheme for FILESTREAM
CREATE PARTITION SCHEME
ItemFSPartitionSch
AS PARTITION ItemPartitionFn ALL TO (Northpole_fs) ;

-- Create Item table with FILESTREAM column
CREATE TABLE Items
 (
 ItemGUID UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ON [PRIMARY] ,
 ItemID INT ,
 ItemName VARCHAR(50) ,
 ItemImage VARBINARY(MAX) FILESTREAM
)
ON ItemPartitionSch(ItemID) FILESTREAM_ON ItemFSPartitionSch ;
GO

Listing 2-25:	 Creating a FILESTREAM table with PARTITION.

After running the script, if we return to the FILESTREAM data container, there are three
new folders; one for each partition in the Items table (Figure 2-8).

83

Chapter 2: Getting Started with FILESTREAM

Figure 2-8:	 Data container showing a folder for each partition in the Items table.

Creating a database with multiple FILESTREAM
filegroups

Depending upon your database design requirements, you might decide to have more
than one FILESTREAM filegroup. If you have a few tables for which you expect a very
high volume of FILESTREAM reads and writes, you might decide to have FILESTREAM
filegroups on different disk volumes, and set up each table to use a different disk for its
FILESTREAM storage. This will give you more throughput as each disk can be used in
parallel.

The script in Listing 2-26 creates a database with two FILESTREAM filegroups.

84

Chapter 2: Getting Started with FILESTREAM

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole.mdf'
), FILEGROUP NorthPole_fs1 CONTAINS FILESTREAM DEFAULT(
 NAME = NorthPole_fs1,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs1'
), FILEGROUP NorthPole_fs2 CONTAINS FILESTREAM(
 NAME = NorthPole_fs2,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_fs2'
) LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter2\NorthPole_log.ldf')
GO

Listing 2-26:	 Creating a database with two FILESTREAM filegroups.

Note that, if you have more than one FILESTREAM filegroup, you need to specify
one of them as the default filegroup; SQL Server will use the default filegroup for the
FILESTREAM storage if you create a table without specifying the FILESTREAM filegroup.
In Listing 2-29, NorthPole_fs1 is specified as the default.

To specify the FILESTREAM filegroup for the table you are creating, use the
FILESTREAM_ON clause, as shown in Listing 2-27, in which two tables are created, each
using a different filegroup.

-- Store FILESTREAM data on "NorthPole_fs1"
CREATE TABLE [dbo].[Items1]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
) FILESTREAM_ON NorthPole_fs1
GO

85

Chapter 2: Getting Started with FILESTREAM

-- Store FILESTREAM data on "NorthPole_fs2"
CREATE TABLE [dbo].[Items2]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
) FILESTREAM_ON NorthPole_fs2
GO

Listing 2-27:	 Creating two tables that store the FILESTREAM data in different filegroups.

You can change the FILESTREAM filegroup of a table even after the table is created.
However, this is possible only if the table does not contain any FILESTREAM
columns. Therefore, you must remove any FILESTREAM columns before you reset the
FILESTREAM_ON flag, as shown in Listing 2-28.

-- Store FILESTREAM data on "NorthPole_fs1"
CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
) FILESTREAM_ON NorthPole_fs1
GO

-- Drop the FILESTREAM column
ALTER TABLE Items DROP COLUMN ItemImage

-- Reset the FILESTREAM_ON flag
ALTER TABLE Items SET
(FILESTREAM_ON = "NULL"
)

86

Chapter 2: Getting Started with FILESTREAM

-- Change the FILESTREAM filegroup
ALTER TABLE Items SET
(FILESTREAM_ON = NorthPole_fs2
)

-- Add the FILESTREAM column back
ALTER TABLE Items
ADD [ItemImage] VARBINARY(MAX) FILESTREAM NULL

Listing 2-28:	 Changing the FILESTREAM filegroup of a table.

Disabling FILESTREAM Storage on a Database

Disabling FILESTREAM storage on a database involves removing the FILESTREAM
files and filegroups from the database. This can be done by using an ALTER DATABASE
statement.

If the database contains any tables that use FILESTREAM storage, all references to
the FILESTREAM filegroups must be removed before the FILESTREAM filegroups are
removed. The procedure is summarized below.

1.	 Drop all FILESTREAM columns from all tables using ALTER TABLE.

2.	 Set the FILESTREAM_ON attribute on all the tables to NULL using ALTER TABLE.

3.	 Remove the FILESTREAM file using ALTER DATABASE.

4.	 Remove the FILESTREAM filegroup using ALTER DATABASE.

Assume that the NorthPole database has a table with a FILESTREAM column, created
using Listing 2-7. SQL Server will not allow the FILESTREAM filegroup to be removed
until all the other steps have been made.

87

Chapter 2: Getting Started with FILESTREAM

First, you have to drop the FILESTREAM column from the table (Listing 2-29).

-- Drop the FILESTREAM column
ALTER TABLE Items DROP COLUMN ItemImage

Listing 2-29:	 Dropping the FILESTREAM column from the Items table.

Note that the association between the FILESTREAM filegroup and the table remains, even
after dropping the FILESTREAM column; SQL Server still thinks that the FILESTREAM
filegroup is not empty. The table is still linked to its FILESTREAM filegroup even though
there are no FILESTREAM columns in the table.

Next, you must disassociate the table from its FILESTREAM filegroup by setting the
FILESTREAM_ON attribute to NULL. Listing 2-30 shows how to do this.

-- Disassociate table "items" from its FILESTREAM filegroup
ALTER TABLE Items SET (FILESTREAM_ON = "NULL")

Listing 2-30:	 Disassociating a table from its FILESTREAM filegroup.

Now you can remove the FILESTREAM file and filegroup using ALTER DATABASE. Listing
2-31 shows how to remove the FILESTREAM capabilities from the example database.

-- Remove the File
ALTER DATABASE NorthPole REMOVE FILE NorthPoleFS ;

-- Remove the Filegroup
ALTER DATABASE NorthPole REMOVE FILEGROUP NorthPoleFS ;

Listing 2-31:	 Removing FILESTREAM features from a database.

88

Chapter 2: Getting Started with FILESTREAM

If a database does not contain any tables that use FILESTREAM storage, removing the
FILESTREAM feature from a database is much simpler, and comprises only two steps:

1.	 Remove the FILESTREAM data container.

2.	 Remove the FILESTREAM filegroup.

Summary

In this chapter, we started with an exploration of the world of FILESTREAM data
containers and filegroups, and a look at how to create FILESTREAM-enabled databases.
The FILESTREAM data container is the file system location in which SQL Server stores
the BLOB data in a FILESTREAM-enabled database. SQL Server stores FILESTREAM data
in special filegroups known as FILESTREAM filegroups.

We saw that a database can have more than one FILESTREAM filegroup, but that one
of the filegroups should be marked as the default filegroup. When you create a table
with FILESTREAM columns you can specify the FILEGROUP in which to store the
FILESTREAM data for that table. If the table has multiple FILESTREAM columns, all of
them will be stored in the same filegroup, which will be the default filegroup, unless you
specify otherwise.

We also looked at how to insert data into our FILESTREAM columns. Unless a DEFAULT
value is assigned to a FILESTREAM column, when creating the table, the data must
be initially inserted using T-SQL. However, inserting or updating FILESTREAM data
using T-SQL may not be beneficial in terms of performance, since SQL Server's memory
buffers are used for processing the BLOB data, which might create memory pressure on
production systems. As such, it is better to set an initial default value on the FILESTREAM
column, and then modify the data to the required values using the Win32 streaming APIs
exposed by SQL Server, which we'll discuss in the next chapter.

Finally, we looked at how to disable FILESTREAM storage, noting in particular that
setting the FILESTREAM column to NULL will delete the associated FILESTREAM data
from the FILESTREAM data container.

89

Chapter 3: Accessing FILESTREAM
Data from Client Applications

As discussed in the previous chapters, FILESTREAM storage is ideal for BLOB data values
that are relatively large (larger than 1 MB). This data can be accessed either through
T-SQL code or through the FILESTREAM APIs exposed by SQL Server, though the latter
is more efficient than the former.

The FILESTREAM APIs come in two flavors, Win32 and .NET, and in this chapter we'll
walk through several examples using each of these I/O streaming APIs.

What is Streaming?

Streaming, in simple terms, means "continuous flow." Within the context of reading and
writing BLOB data, it refers to a continuous flow of bytes to and from the physical disk,
without local buffering (i.e. without collecting bytes in an intermediate location before
transmitting the data to the target). Performing FILESTREAM operations with streaming
offers two immediate benefits. Firstly, it means that only a small memory buffer is needed.
Without streaming, potentially large files will be stored in the memory buffer. This could
overload the server by incurring excessive paging and loss of cached execution plans. It
could also affect other processes running on the server. It is also possible that the file will
be bigger than the available memory on the server.

Secondly, streaming gives better performance in several cases. Your process can start
sending bytes to the target location even before the entire contents of the file are read
from the source location. This performance benefit may be particularly evident if you are
serving the BLOB data to a client over the Internet (such as streaming an audio file or
downloading a file from a client browser).

90

Chapter 3: Accessing FILESTREAM Data from Client Applications

Understanding Streaming Access to
FILESTREAM Data

In order to gain streaming access to the FILESTREAM data, SQL Server exposes a
managed object for the .NET developers and a Win32 API for the Windows programmers.
Having instantiated an SqlFileStream object, representing the FILESTREAM data
file (in case of .NET), or opened a FILESTREAM data file (using the SQL Server Win32
API), you can read or write to the FILESTREAM data file using the FILE manipulation
functions provided by the client library or the .NET programming language.

So how does this differ from the traditional model of storing the BLOB data in the file
system and storing the path to the data file in a relational table? How does SQL Server
maintain transactional consistency between the relational and the FILESTREAM data?

Well, when using the FILESTREAM streaming APIs, you are not accessing the
FILESTREAM data directly; SQL Server opens the file handle and passes it to you through
its own wrapper APIs. This allows SQL Server to keep total control over the operations
and maintain transactional consistency between the relational data in the tables and the
BLOB data in the FILESTREAM store.

Accessing FILESTREAM data through the streaming APIs involves the steps below,
irrespective of the client library or programming language you use.

1.	 Start a transaction – You need a transaction to gain streaming access to the
FILESTREAM data.

2.	 Retrieve the path name and transaction context – You need to obtain a logical path
name to the FILESTREAM data file and a pointer to the current transaction context
to access the FILESTREAM data.

3.	 Open the FILESTREAM data file – Gain access to the FILESTREAM data file either
using the .NET wrapper class or the Win32 FILESTREAM API.

91

Chapter 3: Accessing FILESTREAM Data from Client Applications

4.	 Read/Write FILESTREAM data – Read or write FILESTREAM data using the file I/O
functions.

5.	 Close the FILESTREAM data file – Gracefully close the FILESTREAM data file.

6.	 Commit/rollback the transaction – Commit or roll back the transaction when you
have finished.

Let's examine each of these steps in detail.

Step 1: Starting a transaction

All streaming access to FILESTREAM data, even just read access, must be done within
the context of a database transaction so, before accessing the FILESTREAM data, your
application should start a SQL Server transaction.

The exact manner in which you start a transaction on the current database connection
will vary depending on the client library in use (ADO.NET, Open Database Connectivity,
etc.). There is nothing FILESTREAM-specific in this step, you can just begin a transaction
in the same way as for a T-SQL DML operation.

We will see more detailed examples and fully functional sample code later in this
chapter but, for now, Listing 3-1 shows a simple example of how to start a transaction
on an ADO.NET connection object using C#.

// Create a SqlConnection object
SqlConnection con = new SqlConnection("database=NorthPole;server=(local);
integrated security=sspi;");

//Open a connection to the database
con.Open();

//Start a transaction
SqlTransaction transaction = con.BeginTransaction("ItemTran");

Listing 3-1:	 Using C# to start a transaction on an ADO.NET connection object.

92

Chapter 3: Accessing FILESTREAM Data from Client Applications

Non-.NET programming languages like C++ can use the Win32 Open Database Connec-
tivity (ODBC) APIs to create a connection to the desired database and begin a database
transaction. Listing 3-2 shows an example.

//Connect to SQL Server through ODBC using DSN "NorthPole"
SQLConnect(hdbc, TEXT("NorthPole"), SQL_NTS, NULL, 0, NULL, 0);

//Start a transaction by setting AUTO_COMMIT attribute to OFF
SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, (SQLPOINTER)SQL_AUTOCOMMIT_OFF,
 SQL_IS_UINTEGER);

Listing 3-2:	 Using C++ to start a transaction on an ODBC connection.

When the AUTO_COMMIT attribute is turned OFF on an ODBC connection, the next
T-SQL statement starts an explicit transaction. The transaction stays active until SQL_
COMMIT or SQL_ROLLBACK is called explicitly using SQLEndTran().

Step 2: Retrieving the logical path name and
transaction context

Before accessing a FILESTREAM data value, we must retrieve, from SQL Server, the
logical path to the disk file associated with the FILESTREAM data, and the transaction
context that represents the current database transaction, and then include these values in
the data access request.

FILESTREAM data values and cells

In this chapter, the terms FILESTREAM cell and FILESTREAM data value refer, respectively, to a specific

cell in a FILESTREAM table (i.e. the intersection of a given row and column) and the BLOB data stored

in a FILESTREAM cell.

93

Chapter 3: Accessing FILESTREAM Data from Client Applications

PathName() is a new intrinsic function available on the FILESTREAM-enabled column
of a SQL Server 2008 database. Note that, unlike other T-SQL functions, PathName()
is case sensitive. It returns the logical path to the physical file associated with a
FILESTREAM data value. The example in Listing 3-3 retrieves the PathName() of the
ItemImage column from the Items table. The PathName() value returned by each
FILESTREAM cell will be unique, pointing to the specific disk file associated with the data
in the given FILESTREAM cell.

SELECT
 ItemNumber,
 ItemImage.PathName() AS LogicalPath
FROM Items
/*
Item# LogicalPath
------ --
MS1001 \\JACOB-LAPTOP\SQL2008R2NOV\v1\ <= wrapped
 NorthPole\dbo\Items\ItemImage\ <= for
 E76D878F-0B2D-48EE-906E-58349797D6EC <= readability
*/

Listing 3-3:	 Using T-SQL to retrieve the logical path name of the FILESTREAM data value.

The logical path returned by the PathName() function should be passed back to SQL
Server to access the FILESTREAM data value. SQL Server uses this value to identify the
correct FILESTREAM data file when you request streaming access to the FILESTREAM
data value of a column.

The PathName() function returns NULL if the value stored in the FILESTREAM cell is
NULL. Streaming access is possible only to a FILESTREAM cell that has non-NULL value. A
very detailed discussion of the PathName() function is provided later in this chapter.

The FILESTREAM transaction context associated with the current transaction can
be retrieved by calling another new T-SQL function in SQL Server 2008: GET_
FILESTREAM_TRANSACTION_CONTEXT(). This is the second piece of information that

94

Chapter 3: Accessing FILESTREAM Data from Client Applications

needs to be sent to SQL Server, along with the request, in order to gain streaming access
to a FILESTREAM data value. Listing 3-4 shows an example.

-- Start an explicit transaction
BEGIN TRAN

-- returns the FILESTREAM TRANSACTION CONTEXT associated with the current session
SELECT GET_FILESTREAM_TRANSACTION_CONTEXT()

/*
output

0xEC138B4813D41841A7360E5236D7CEDB
*/

Listing 3-4:	 Using T-SQL to retrieve the FILESTREAM transaction context.

If an active transaction context exists in the current session, then the return value is
a byte array of type VARBINARY(MAX). If there is no active transaction in the current
session, NULL is returned.

Note that, although the example in Listing 3-4 demonstrates how to call the GET_
FILESTREAM_TRANSACTION_CONTEXT() function using T-SQL, the return value is
meaningless in T-SQL; it has meaning only to a client application that wants to access the
FILESTREAM data using the streaming APIs.

Listing 3-5 shows how to retrieve the current transaction context and the logical path to
the FILESTREAM data value prior to requesting streaming access, from C#.

// Retrieve the PathName() and transaction context
SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.CommandText = ("SELECT TOP 1 "
 + (" ItemImage.PathName() AS filePath, "
 + (" GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext "
 + ("FROM Items"))));

95

Chapter 3: Accessing FILESTREAM Data from Client Applications

// Begin a transaction
SqlTransaction trn = con.BeginTransaction("ItemTran");
cmd.Transaction = trn;

// Execute the query
SqlDataReader reader;
reader = cmd.ExecuteReader();

Listing 3-5:	 Using C# to retrieve the transaction context and logical path name of

a FILESTREAM data value.

Step 3: Opening the FILESTREAM data file

The next step is to open the FILESTREAM data file, using the wrapper function/class
provided by SQL Server. Direct access to the physical files stored in the FILESTREAM data
container can corrupt the database, so it's always advisable to access the data through
these streaming APIs.

.NET developers can use the SqlFileStream object to access the FILESTREAM data.
SqlFileStream exposes SQL Server data that is stored with the FILESTREAM column
as a sequence of bytes. It resides within the namespace System.Data.SqlTypes and
within the assembly System.Data.dll. You must have .NET Framework 3.5 SP 1 or later
to use SqlFileStream class.

SqlFileStream is derived from System.IO.Stream. Once you have a valid
SqlFileStream object representing the desired FILESTREAM data file, you can
use the Read(), Write() or the other "stream" functions available within the class to
manipulate your FILESTREAM data.

Listing 3-6 shows how to open a FILESTREAM data file for reading.

96

Chapter 3: Accessing FILESTREAM Data from Client Applications

// Open and read file using SqlFileStream Class
string filePath = reader.GetString(0);
object objContext = reader.GetValue(1);
byte[] txContext = (byte[])objContext;

SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Read);

Listing 3-6:	 Using C# to open a FILESTREAM data file for read access.

The parameter filePath is the logical path name of the FILESTREAM data file we
obtained using the PathName() method call, and txContext is the FILESTREAM
transaction context associated with the current transaction.

The third parameter specifies the file access mode. It can be one of Read, Write, or
ReadWrite. Read opens the FILESTREAM data file for reading all the content. When
Write is specified, the SqlFileStream object will point to a zero-byte file and existing
data will be overwritten when the object is closed and transaction is committed. When
ReadWrite is used, the file is opened for both reading and writing, and the file pointer
is placed at the beginning of the file. By using the Seek() method, you can move the file
pointer to any location in the file to overwrite the existing content, or you can move it
to the end of the file to append more data. See SqlFileStream Class Reference, later in this
chapter, for a detailed discussion of the different constructors and member functions of
the SqlFileStream class.

Non .NET programming languages can use the FILESTREAM Win32 API to obtain a
Windows file handle to the requested FILESTREAM data file, and use the file handle
to read or write FILESTREAM data. SQL Server 2008, or later, Native Client exposes a
new Win32 API, OpenSqlFilestream(), which returns a Windows file handle to the
requested FILESTREAM data file. Just like the .NET example we saw earlier, you need to
pass the FILESTREAM transaction context and logical path to the desired FILESTREAM
data value when calling this function, as shown in Listing 3-7.

97

Chapter 3: Accessing FILESTREAM Data from Client Applications

//Get a handle to the FILESTREAM data using OpenSqlFileStream API
SQLCHAR transactionToken[32];
SQLINTEGER cbTransactionToken = sizeof(transactionToken);
HANDLE srcHandle = INVALID_HANDLE_VALUE;
srcHandle = OpenSqlFilestream (
 dstFilePath, SQL_FILESTREAM_READ,

 SQL_FILESTREAM_OPEN_NONE , transactionToken,
 cbTransactionToken, 0);

Listing 3-7:	 Using C++ to open a FILESTREAM data file for read access.

The first parameter is the logical path to the FILESTREAM data file obtained from a call
to the PathName() function. The second argument specifies file access mode. It can be
one of SQL_FILESTREAM_READ, SQL_FILESTREAM_WRITE, or SQL_FILESTREAM_
READWRITE (for read, write, and read/write operations respectively).

The third parameter allows you to specify the file attributes and flags. These are
additional hints that tell the system about the usage pattern, and the system will use
this information to optimize caching and performance. In Listing 3-7 we have set it to
SQL_FILESTREAM_OPEN_NONE which indicates that the file needs to be opened with no
specific flags.

The fourth argument is the transaction context we retrieved, and the fifth specifies the
size (in bytes) of the transaction context buffer.

The last argument allows you to specify the initial allocation size of the data file in bytes;
this is ignored when the file is opened for read operation.

See OpenSqlFilestream API Reference, later in this chapter, for a detailed discussion of this
API function.

98

Chapter 3: Accessing FILESTREAM Data from Client Applications

Step 4: Reading and writing FILESTREAM data

Once you have a valid FILESTREAM file handle (if you are using Win32 API) or a valid
SqlFileStream() object (if you are using Managed API) you can go ahead and read
or write FILESTREAM data. The read/write operations you perform on the Win32
handle or the SqlFileStream object will affect the disk file associated with the given
FILESTREAM data value.

Listing 3-8 reads data from a FILESTREAM data file and copies it to a disk file. This
example targets .NET Framework Version 4 or later, which adds the CopyTo() method
to the Stream class. For earlier versions of the .NET Framework, one can write a helper
method that will perform a similar buffered copy between two streams.

//Open the FILESTREAM data file
SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Read);

//Create the target data file
FileStream fStream = new FileStream("C:\\temp\\MicrosoftMouse2.jpg",
 FileMode.CreateNew);

//Transfer data from FILESTREAM data file to disk file using a 4KB buffer size
fs.CopyTo(fStream, 4096);

//Close the source file
fStream.Close();

Listing 3-8:	 Using C# to read a FILESTREAM data file and write to a disk file.

Listing 3-9 demonstrates a write operation where the data is read from a disk file and
copied into a FILESTREAM column.

//Open the FILESTREAM data file for writing
SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Write);
// Open the source file for reading
FileStream fStream = new FileStream("C:\\temp\\MicrosoftMouse2.jpg",
 FileMode.Open, FileAccess.Read);

99

Chapter 3: Accessing FILESTREAM Data from Client Applications

//Transfer data from disk file into the FILESTREAM column
fStream.CopyTo(fs, 4096);

//Close the source file
fStream.Close();

Listing 3-9:	 Using C# to read a disk file and write into a FILESTREAM column.

It is apparent that the SqlFileStream object makes FILESTREAM data manipulation
much simpler. It is a little bit more complicated when reading FILESTREAM data using
the Win32 API function, as shown in Listing 3-10.

//Get a handle to the FILESTREAM data using OpenSqlFileStream API
fsHandle = OpenSqlFilestream(
 fsFilePath, SQL_FILESTREAM_READ, 0, tkn, tknSize, 0);

//Create the disk file to copy data
fileHandle = CreateFile(TEXT("C:\\temp\\microsoftmouse2.jpg"), GENERIC_WRITE,
 FILE_SHARE_WRITE, NULL, CREATE_NEW, FILE_FLAG_SEQUENTIAL_SCAN,
NULL);

const int COPYBUFFERSIZE = 4096;
DWORD bytesRead = 0;
DWORD bytesWritten = 0;
do
{
 //Read from FILESTREAM
 ReadFile(fsHandle, buffer, COPYBUFFERSIZE, &bytesRead, NULL);

 //Write to disk file
 if (bytesRead > 0)

 {
 WriteFile(fileHandle, buffer, bytesRead, &bytesWritten, NULL);
 }
} while (bytesRead == COPYBUFFERSIZE);

//close the disk file handle
if (fileHandle != INVALID_HANDLE_VALUE) CloseHandle(fileHandle);

Listing 3-10:	 Using C++ to read a FILESTREAM data file and write to a disk file.

100

Chapter 3: Accessing FILESTREAM Data from Client Applications

Listing 3-11 opens a disk file and copies the contents of the file into a FILESTREAM
column.

//Get a handle to the FILESTREAM data using OpenSqlFileStream API
fsHandle = OpenSqlFilestream(
 dstFilePath, SQL_FILESTREAM_WRITE, 0, tkn, tknSize, 0);

//Open the disk file to read
fileHandle = CreateFile(TEXT("C:\\temp\\microsoftmouse2.jpg"), GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING,
 FILE_FLAG_SEQUENTIAL_SCAN, NULL);

const int COPYBUFFERSIZE = 4096;
DWORD bytesRead = 0;
DWORD bytesWritten = 0;
do
{
 //Read from the disk file
 ReadFile(fileHandle, buffer, COPYBUFFERSIZE, &bytesRead, NULL);

 //Write to the FILESTREAM column
 if (bytesRead > 0)

 {
 WriteFile(fsHandle, buffer, bytesRead, &bytesWritten, NULL);
 }
} while (bytesRead == COPYBUFFERSIZE);

//close the disk file handle before closing the transaction
if (fileHandle != INVALID_HANDLE_VALUE) CloseHandle(fileHandle);

Listing 3-11:	 Using C++ to read from a disk file and write into a FILESTREAM column.

101

Chapter 3: Accessing FILESTREAM Data from Client Applications

Step 5: Closing the FILESTREAM data file

After the desired operation is completed, it is important to close the FILESTREAM data
file. The FILESTREAM handle should be closed before the transaction is committed or
rolled back. Listing 3-12 shows how to close the FILESTREAM file handle.

//close the file handle
fs.Close();

Listing 3-12:	 Using C# to close the FILESTREAM file handle.

Any UPDATE triggers on the table will be fired when the FILESTREAM data file that was
opened for the Write operation is closed.

Step 6: Closing the transaction (COMMIT/ROLLBACK)

After closing the FILESTREAM data file, the current transaction should be committed
or rolled back depending upon the status of the operation. When the transaction is
committed, the changes made to the FILESTREAM data file will be permanently written
to the FILESTREAM data file. A rollback will undo the changes done in the current trans-
action. Listing 3-13 commits the current transaction.

//Commit the transaction
cmd.Transaction.Commit();

Listing 3-13:	 Using C# to commit the transaction associated with an ADO.NET command object.

102

Chapter 3: Accessing FILESTREAM Data from Client Applications

Data Manipulation Using the Streaming APIs

On a FILESTREAM-enabled table, a client application might perform one or more of the
database operations below.

•	 Insert a new record into a FILESTREAM-enabled table.

•	 Replace the FILESTREAM data completely.

•	 Replace the FILESTREAM data partially.

•	 Append more data to an existing FILESTREAM data value.

•	 Read the information stored in a FILESTREAM column.

•	 Delete the FILESTREAM data value from a column.

•	 Delete a row from a FILESTREAM-enabled table.

Some of these operations must be done using T-SQL, whereas some of them are best
done using the streaming APIs. We'll examine each one in detail, and recommend the
best approach. We'll then present a worked lab that demonstrates how to insert, read, and
partially update FILESTREAM data via the streaming APIs.

Inserting a new record into a FILESTREAM-enabled
table

As discussed in Chapter 2, unless the FILESTREAM column is assigned a default value, a
client application will need to execute a T-SQL INSERT statement in order to add a new
row into a FILESTREAM-enabled table, rather than use the streaming APIs. The reason
for this is that streaming access can be made only to rows that contain non-NULL BLOB
data in the FILESTREAM column.

103

Chapter 3: Accessing FILESTREAM Data from Client Applications

To avoid additional round trips to the database, the stored procedure or T-SQL batch
that is used to perform the INSERT operation can also return the FILESTREAM trans-
action context of the current transaction and the logical path to the FILESTREAM data
file associated with the newly inserted record. The client application can then use these
values to access the FILESTREAM data.

Since it is not possible to use the streaming API to create a new FILESTREAM data file
and associate it with a FILESTREAM column, to create a new record and save the BLOB
data into the FILESTREAM column the client application must use two steps.

1.	 Execute a T-SQL statement to create a new record along with a dummy FILESTREAM
value. Inserting a fake value such as 0x into the FILESTREAM column will force SQL
Server to create a FILESTREAM data file and associate it with the column.

2.	 Once the FILESTREAM data file has been created, the client application can use the
PathName() value of the FILESTREAM column in the newly inserted record to access
the FILESTREAM data file and write the BLOB data into it.

An alternative solution involves not allowing NULL values in the FILESTREAM column
and providing a default value of 0x. This ensures that the FILESTREAM cell will always
be associated with a valid file, and can remove some repetitive code from the application
that is writing FILESTREAM data.

Replacing the FILESTREAM data completely

When the FILESTREAM data is to be replaced completely, this is usually done using
the streaming APIs. A client application can perform a write operation using either the
SqlFileStream class (.NET) or the OpenSqlFilestream() Win32 API function. When
the FILESTREAM data file is opened for write access, the file pointer is at the beginning
of the file. The write operation will write into a new disk file, and the reference on the
FILESTREAM column will be updated to point to the new file when the file handle is

104

Chapter 3: Accessing FILESTREAM Data from Client Applications

closed and transaction is committed. The old FILESTREAM data file will be removed by
an asynchronous garbage collector thread.

Note that any UPDATE triggers that exist on the target table will be fired when the
FILESTREAM file handle is closed.

Partial updates to FILESTREAM data

A partial update involves replacing a part of an existing FILESTREAM data file with new
content, or appending to the end of an existing BLOB file. Unlike partial updates on
VARBINARY(MAX) columns, attempting partial updates on FILESTREAM cells is a very
slow operation because a new disk file will be created with the new file content every time
the contents change. This adds a lot of additional I/O requirements. In effect, there is
no such thing as a partial update to a FILESTREAM data file so, if your business or appli-
cation requires frequent small partial updates to the BLOB data, you might want to use
VARBINARY(MAX) columns rather than FILESTREAM storage.

If necessary to support a legacy application, partial updates can be simulated by opening
the FILESTREAM data file for read-write access and then moving the file pointer to
the appropriate position before writing the new data to the desired location, either
overwriting existing data, or appending the data to the end of the file.

Any UPDATE triggers that exist on the target table will be fired when the FILESTREAM
file handle is closed.

105

Chapter 3: Accessing FILESTREAM Data from Client Applications

Reading information from the FILESTREAM store

.NET applications can access the FILESTREAM data file for read access using the
SqlFileStream() class and specifying the READ flag.

Win32 applications can use the OpenSqlFilestream() Win32 API function to obtain a
handle to the FILESTREAM data file associated with the FILESTREAM cell.

Just like the write operation, read will also require a two-step approach; the client
application must retrieve the FILESTREAM transaction context and the logical path
name for the FILESTREAM cell before accessing the FILESTREAM data file associated
with the column.

Deleting the BLOB data stored in a FILESTREAM
column

The recommended way to delete the BLOB data stored in a FILESTREAM column is
by using a T-SQL UPDATE statement, as was described in Chapter 2. The BLOB data
associated with a FILESTREAM column is deleted when the value of the column is set
to NULL.

Deleting a row from a FILESTREAM-enabled table

Just like the INSERT operation, deleting a row from a FILESTREAM-enabled table
must be done using T-SQL. This can be achieved directly, by using a DELETE query, or
indirectly, in which a client library such as ADO.NET runs a DELETE query.

106

Chapter 3: Accessing FILESTREAM Data from Client Applications

Lab 1: Reads, Writes and Partial Updates

It is time for us to write some fully functional sample code that reads and writes
FILESTREAM data to perform the FILESTREAM operations below.

1.	 Inserting a new record (with T-SQL) and storing FILESTREAM data in the column.

2.	 Reading information from a FILESTREAM column.

3.	 Performing partial updates on the BLOB data stored in a FILESTREAM column.

In the following sections, we'll provide the sample code and step-by-step explanations
for each of these operations in C# using the Managed API. The sample code for VB.NET
(using the Managed API) and C++ (using the Win32 API) is supplied separately in the
download. Though the syntax and code used in each of these programming languages
differ a little, the overall flow of the operations remains the same across all these
programming languages.

Inserting a new record with FILESTREAM data

Let us see an example that reads the content of a disk file and stores it in the
FILESTREAM data container. We will load the content of the Microsoft Mouse image file
that we used in Chapter 2.

The first step is to create a connection to the desired target SQL Server 2008 instance
that hosts the database with the FILESTREAM-enabled table in which we want to store
the BLOB data, as shown in Listing 3-14.

//References at the top of the file
using System;
using System.Data;
using System.Windows.Forms;
using System.Data.SqlClient;

107

Chapter 3: Accessing FILESTREAM Data from Client Applications

using System.Data.SqlTypes;
using System.IO;

public void SaveItemImage()
{
 byte[] txContext = null;
 string filePath = string.Empty;

 // Create a connection to the database
 string ConStr = ("Data Source=(local);" +
 "Initial Catalog=NorthPole;Integrated Security=True");
 SqlConnection con = new SqlConnection(ConStr);
 con.Open();

Listing 3-14:	 Creating a connection to the SQL Server instance.

Note that to access FILESTREAM data through the streaming API, you must connect to
SQL Server using Integrated Security (Windows authentication). If you connect to SQL
Server using SQL Server authentication, you will get an "Access Denied" error when you
try to open the FILESTREAM data file.

Next, we insert a row with a dummy value into the FILESTREAM column in the Items
table, using the T-SQL INSERT statement shown in Listing 3-15. Notice the OUTPUT
clause, which returns the path name associated with the FILESTREAM column of the
newly inserted row, along with the current FILESTREAM transaction context.

// Insert a record to the table and retrieve the PathName()
// A dummy value is inserted to the ItemImage column to obtain a valid PathName()

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.CommandText = "INSERT INTO Items " +
 "(ItemID, ItemNumber, ItemDescription, ItemImage)" +
 "OUTPUT GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext," +
 " inserted.ItemImage.PathName() AS filePath " +
 "SELECT NEWID(), 'A0001', 'Microsoft Mouse', 0x";

108

Chapter 3: Accessing FILESTREAM Data from Client Applications

SqlTransaction transaction = con.BeginTransaction("ItemTran");
cmd.Transaction = transaction;
SqlDataReader reader = cmd.ExecuteReader();

if (reader.Read())
{
 txContext = (reader["txContext"] as byte[]);
 filePath = reader["filePath"].ToString();
}
reader.Close();

Listing 3-15:	 Inserting a record and retrieving the FILESTREAM file path and transaction context.

Once we have the logical path to the FILESTREAM data file and the FILESTREAM
transaction context, we can write the binary data (the content of the disk file that stores
the image) into the FILESTREAM store, as shown in Listing 3-16.

//Open the FILESTREAM data file for writing
SqlFileStream fs = new SqlFileStream(filePath, txContext,
 FileAccess.Write);

// Open the disk file for reading
FileStream localFile = new FileStream("C:\\temp\\microsoftmouse.jpg",
 FileMode.Open, FileAccess.Read);

//Copy data from disk file to FILESTREAM column
localFile.CopyTo(fs, 4096);

Listing 3-16:	 Writing the content of a byte array into a FILESTREAM data file.

And finally, we close the FILESTREAM file, commit the transaction, and close the
database connection to complete the exercise (Listing 3-17).

//Close the files
localFile.Close();
fs.Close();

109

Chapter 3: Accessing FILESTREAM Data from Client Applications

//Commit the transaction and close the connection
cmd.Transaction.Commit();
con.Close();

Listing 3-17:	 Cleanup code.

As previously mentioned, the full listings for this exercise using C#, VB.NET, and C++
can be found in the download files.

Reading FILESTREAM data

Now we'll look an example that reads the BLOB data from the FILESTREAM store in the
Items table and creates a disk file with the BLOB data.

First, we need to create a connection to the SQL Server 2008 instance. The next step is to
write a SELECT query that retrieves the path name and FILESTREAM transaction context
of the desired record in the Items table (Listing 3-18). To make the code listing simpler,
we will just select the TOP 1 row from the table. In real life, you might be querying for a
specific record based on a search criteria.

public void ReadItemImage()
{
 string filePath = string.Empty;
 byte[] txContext = null;
 string ConStr;

 ConStr = ("Data Source=(local);Initial Catalog=NorthPole"
 + ";Integrated Security=True");
 SqlConnection con = new SqlConnection(ConStr);
 con.Open();

 SqlCommand cmd = new SqlCommand();
 cmd.Connection = con;
 cmd.CommandText = "SELECT TOP 1 " +
 " ItemImage.PathName() AS filePath, " +
 " GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext " +
 "FROM Items";

110

Chapter 3: Accessing FILESTREAM Data from Client Applications

 SqlTransaction trn = con.BeginTransaction("ItemTran");
 cmd.Transaction = trn;
 SqlDataReader reader;
 reader = cmd.ExecuteReader();

 // Retrieve the FilePath() of the image file
 if (reader.Read())
 {
 txContext = (reader["txContext"] as byte[]);
 filePath = reader["filePath"].ToString();
 }
 reader.Close();

Listing 3-18:	 Retrieving the FILESTREAM logical path name and transaction context.

We can now go ahead and open the FILESTREAM data file. The sample code in
Listing 3-19 opens a FILESTREAM data file for read operation.

//Open the FILESTREAM data file
SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Read);

Listing 3-19:	 Opening a FILESTREAM data file for read operation.

Next, we open the target file into which we will write the data being read from the
FILESTREAM data file (Listing 3-20).

//Create the target data file
FileStream localFile = new FileStream("C:\\temp\\MicrosoftMouse2.jpg",
 FileMode.CreateNew);

Listing 3-20:	 Creating a disk file to store the BLOB data.

In Listing 3-21, we read from the FILESTREAM data file and write into the disk file we just
created.

111

Chapter 3: Accessing FILESTREAM Data from Client Applications

// Transferring data from FILESTREAM data file to disk file
fs.CopyTo(localFile, 4096);

Listing 3-21:	 Reading from the FILESTREAM data file and writing to the disk file.

This should be followed by the cleanup operation to close the FILESTREAM file, commit
the transaction, and close the database connection (Listing 3-17).

Performing partial updates

A partial update is performed by opening the FILESTREAM data file for read-write
operation, and then moving the file pointer to the desired location using the Seek()
function, or to the end of the file to append new content.

In order to verify the result of the operation manually, we will use some text data instead
of the binary image file from the previous examples. We will perform the actions below.

1.	 Create a text file on a local folder.

2.	 Open the FILESTREAM data file for write access and store the content of the
text file in it.

3.	 Open the FILESTREAM data file for read-write access, and then move to the end of
the file and write the content of the text file (created at Step 1) into the file again.
There will be two copies of the text in the FILESTREAM data file.

4.	 Open the FILESTREAM data file for read access, and then read the contents of the
data file and write it into a disk file.

5.	 Open the disk file created at Step 4 and verify that it contains two copies of the
original text.

112

Chapter 3: Accessing FILESTREAM Data from Client Applications

To start with, let's create a text file with some simple text data in C:\temp folder, and
name the file original.txt (Figure 3-1).

Figure 3-1:	 Creating a text file.

Next, we need to write the content of this file into the FILESTREAM data store. As
previously, we need to connect to SQL Server, start a transaction, and retrieve the
FILESTREAM column logical path name and the FILESTREAM transaction context.

Next, we will read the content of original.txt and write it into the FILESTREAM file.
We will open the FILESTREAM data file for write access and write the content of the
source file into it (Listing 3-22).

//Open the FILESTREAM data file and store the content of source file
SqlFileStream fs = new SqlFileStream(filePath, txContext,
 FileAccess.Write);
FileStream localFile = new FileStream("C:\\temp\\original.txt",
 FileMode.Open, FileAccess.Read);
localFile.CopyTo(fs, 4096);

localFile.Close();
fs.Close();

Listing 3-22:	 Reading the content of original.txt and writing it to the FILESTREAM data store.

Next, we'll perform the partial update. In Listing 3-23, we open the file for read-write
access, move to the end of the file, and write the content of original.txt again.

113

Chapter 3: Accessing FILESTREAM Data from Client Applications

//Re-open the FILESTREAM data file and move to the end of file
fs = new SqlFileStream(filePath, txContext, FileAccess.ReadWrite);
fs.Seek(0, SeekOrigin.End);

localFile = new FileStream("C:\\temp\\original.txt",
 FileMode.Open, FileAccess.Read);

//Append the content of original.txt again
localFile.CopyTo(fs, 4096);
localFile.Close();
fs.Close();

Listing 3-23:	 Performing a partial update.

We just performed a partial update on the FILESTREAM column. We will now verify that
the information is stored as expected, by reading the contents of the FILESTREAM data
file and creating a new text file with the data. We can then open the text file and verify
that the partial update took place correctly (Listing 3-24).

//Open the FILESTREAM data file for 'READ' and copy contents
//into a disk file
fs = new SqlFileStream(filePath, txContext, FileAccess.Read);
localFile = new FileStream("C:\\temp\\copy.txt", FileMode.Create);
fs.CopyTo(localFile, 4096);

localFile.Close();
fs.Close();

Listing 3-24:	 Reading from the FILESTREAM data file and writing to a disk file.

Let's now open the text file (copy.txt) and verify that it contains two copies of the text
data that was present in original.txt (Figure 3-2).

114

Chapter 3: Accessing FILESTREAM Data from Client Applications

Figure 3-2:	 Verifying that the copy contains two copies of the original text.

We can see that the partial update has taken place as expected.

Handling multiple FILESTREAM columns and rows

One of the interesting features T-SQL programming offers is the ability to perform
set-based operations. A set operation allows you to process more than one row and
column in a single T-SQL query.

However, when it comes to accessing FILESTREAM data through the streaming APIs,
set-based operations are not applicable. In the examples discussed above, we saw how
to read or write a single FILESTREAM cell using I/O streaming. If you want to read or
write more than one FILESTREAM column or row, you must process each, one by one.
The pseudocode in Listing 3-25 shows an approximate representation of how to read
FILESTREAM data from more than one row and column.

/*
Connect to database
Begin a transaction
Retrieve 10 rows from a table that has 3 FILESTREAM columns
 SELECT TOP 10
 GET_FILESTREAM_TRANSACTION_CONTEXT(),
 FileStreamColumn1.PathName(),
 FileStreamColumn2.PathName(),
 FileStreamColumn3.PathName()

115

Chapter 3: Accessing FILESTREAM Data from Client Applications

 FROM Items
For each row in the result set
 For column 1 to 3
 Open the FILESTREAM data file
 Read from FILESTREAM data File
 Do something with the data
 Close the FILESTREAM data file
 Next column
Next row
Commit transaction
Close database connection
*/

Listing 3-25:	 Pseudocode that shows how to read BLOB data from more than one row and column.

Understanding the Logical Path to a
FILESTREAM Data File

You may have noticed by now that FILESTREAM deals with a lot of logical identifiers! For
example, the FILESTREAM file share, configured while enabling the FILESTREAM feature
(see Appendix A) is not mapped to a physical directory on the system; it is simply a logical
identifier that SQL Server uses internally to point to the FILESTREAM data container. If
you try to explore the FILESTREAM share name by double-clicking on it from Windows
Explorer, you will realize that it does not open any folder, as would be expected for a
"normal" file share.

Just like the FILESTREAM file share, the logical path to a FILESTREAM data file (returned
by the PathName() function) is an internal identifier that SQL Server uses to point to
the disk file associated with a FILESTREAM data value. When a client application wants
to read or write FILESTREAM data through the streaming APIs, it needs to have a way
to exactly pinpoint the FILESTREAM value on a specific table, row, or column. The
PathName() function make this simpler. A client application can run a T-SQL query that
locates the specific FILESTREAM value and calls the PathName() function to retrieve a
logical identifier pointing to it.

116

Chapter 3: Accessing FILESTREAM Data from Client Applications

The client application can then pass this value to the FILESTREAM API method call
to open the NTFS data file represented by the logical identifier returned by the
PathName() function.

To illustrate this point, let's return to the example we first saw in Chapter 2, and create a
new FILESTREAM-enabled database (Listing 3-26).

CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPoleDB,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter3\NorthPoleDB.mdf'
), FILEGROUP NorthPoleFS CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter3\'NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter3\NorthPole_log.ldf')

Listing 3-26:	 Creating a FILESTREAM-enabled database.

In Listing 3-27, we create a table with a FILESTREAM column and insert some data.

-- Create "Items" table
CREATE TABLE [dbo].[Items](
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,
 [ItemNumber] VARCHAR(20),
 [ItemDescription] VARCHAR(50),
 [ItemImage] VARBINARY(MAX) FILESTREAM NULL
)
GO
-- Insert the data to the table
INSERT INTO Items (ItemID, ItemNumber, ItemDescription, ItemImage)
SELECT
 NEWID(), 'MS1001', 'Microsoft Mouse',
 CAST(bulkcolumn AS VARBINARY(MAX))
FROM OPENROWSET(
 BULK 'C:\temp\MicrosoftMouse.jpg', SINGLE_BLOB
) AS x

Listing 3-27:	 Creating a table with a FILESTREAM column and populating it with sample data.

117

Chapter 3: Accessing FILESTREAM Data from Client Applications

Let us now try to query the table and see the data we just inserted (Listing 3-28).

SELECT * FROM Items

/*
ItemID Item# ItemDescription ItemImage
------------ ------ --------------- -------------------
E76D878F-0.. MS1001 Microsoft Mouse 0xFFD8FFE000104A4..
*/

Listing 3-28:	 Querying the Items table.

The column ItemImage stores the FILESTREAM data we just inserted. To a T-SQL
query, the FILESTREAM column appears as a VARBINARY(MAX) column. However, the
data is stored in the FILESTREAM data container as a disk file. Every BLOB value in every
FILESTREAM column (in every non-NULL FILESTREAM field) has a disk file associated
with it in the FILESTREAM data container.

The logical path name refers to the disk file associated with each BLOB data value,
and can be retrieved by using the new intrinsic function PathName(), as shown in
Listing 3-29. Note that PathName() is case sensitive. You will get an error if the
correct case is not used when invoking this method.

SELECT
 ItemNumber,
 ItemImage.PathName() AS LogicalPath
FROM Items

/*
Item# LogicalPath
------ --
MS1001 \\localhost\MSSQLSERVER\v1\ <= wrapped
 NorthPole\dbo\Items\ItemImage\ <= for
 E76D878F-0B2D-48EE-906E-58349797D6EC <= readability
*/

Listing 3-29:	 Retrieving the logical path associated with a FILESTREAM data value.

118

Chapter 3: Accessing FILESTREAM Data from Client Applications

The example above shows the logical path to the FILESTREAM data inserted into the
Items table using the script in Listing 3-27 on the author's computer. If you run the code
on your computer, you might see a slightly different result.

Table 3-1 dissects the various different component parts of the logical path name of a
FILESTREAM data file.

\\localhost Computer name.

\MSSQLSERVER FILESTREAM share name.

\v1

FILESTREAM version number (used internally).

On SQL Server 2008 and 2008 R2 the version
number shows up as "v1." On SQL Server
2012, the version number shows up as "v02"
which is part of a more complex value such as
"v02-A60EC2F8-2B24-11DF-9CC3-AF2E56D89593."

\NorthPole\dbo\Items\ Fully qualified object name (Database\Schema\Table).

\ItemImage Column name.

\E76D878F-0B2D-48EE-906E-
58349797D6EC

File identifier. This is the value of the ROWGUIDCOL
of the current row.

VolumeHint-HarddiskVolume2 This additional value is seen only in SQL Server 2012.

Table 3-1:	 The components of the logical path name.

Note that the logical path name is useful only to SQL Server; you cannot reliably identify
the disk file using this information. SQL Server installs a filter driver which translates the
logical path name to the correct disk file when you try to access it using the streaming
API functions.

119

Chapter 3: Accessing FILESTREAM Data from Client Applications

The PathName() function returns NULL if the FILESTREAM column is NULL. This
means that a FILESTREAM column with NULL value cannot be accessed using the Win32
streaming APIs.

Formatting PathName()

When invoking the PathName() function, you can specify additional flags to format
the output that is returned. PathName() takes an integer parameter 0, 1, or 2; the
default is 0.

The only difference is in the server name. Table 3-2 shows the way in which PathName()
formats the server name with the different flags that it supports.

PathName()
PathName(0)

\\JACOB-LAPTOP
Converts the server name to
NetBIOS format.

PathName(1) \\jacob-laptop
Does not perform any
conversion.

PathName(2) \\jacob-laptop.beyondrelational.com

If the server is part of a
domain, returns the fully
qualified domain name.

If the server is not part of a
domain, does not perform
any conversion, as for
PathName(1).

Table 3-2:	 Pathname parameters.

120

Chapter 3: Accessing FILESTREAM Data from Client Applications

In most cases this formatting may not be helpful for us as database administrators or
developers. According to Srini Acharya, a Senior Program Manager in the Relational
Engine development group at Microsoft SQL Server, this formatting is intended for the
use of testing and support engineers at Microsoft.

PathName() and ROWGUIDCOL

In Chapter 1, we stated that a FILESTREAM column could be created only on a table that
has one (and only one) UNIQUEIDENTIFIER column, with the ROWGUIDCOL attribute,
which indicates that the value in that column can be used to uniquely identify each row
in the table. However, since the database engine does not do anything to enforce this
uniqueness, the NOT NULL and UNIQUE attributes are also required on this column.

The value stored in the column marked as ROWGUIDCOL can even be accessed without
knowing the name of the column. For example, if a table named Customers exists, and
the UNIQUEIDENTIFIER column, with the ROWGUIDCOL attribute, is called CustomerID,
then values from the CustomerID column can be retrieved using SELECT $ROWGUID
FROM Customers.

Not only must this ROWGUIDCOL column of the table exist, it must also be visible to
the query that uses the PathName() function. If we create a view or common table
expression (CTE) that does not include the ROWGUIDCOL column, executing the
PathName() function on the view or CTE will generate an error (Books Online clearly
explains the reason for this restriction).

Listing 3-30 creates a VIEW of the Items table, but does not include the ROWGUIDCOL in
the view.

121

Chapter 3: Accessing FILESTREAM Data from Client Applications

-- Create a VIEW
CREATE VIEW ItemInfo AS
SELECT ItemNumber, ItemImage FROM Items
GO

-- SELECT from the VIEW
SELECT
 ItemNumber,
 ItemImage.PathName()
FROM ItemInfo

/*-- Output
Msg 5539, Level 16, State 1, Line 3
The ROWGUIDCOL column associated with the FILESTREAM being used is not visible
where method PathName is called.
*/

Listing 3-30:	 Using a view to show that the ROWGUIDCOL must be visible to the PathName() query.

The ItemInfo view does not include the ROWGUIDCOL column, so a call to the
PathName() on any of the columns will generate an error. To fix this problem, we must
include the ItemID column (which is marked as ROWGUIDCOL) in the view, as shown in
Listing 3-31.

ALTER VIEW ItemInfo AS
SELECT
 ItemNumber,
 ItemImage,
 ItemID --This is needed for PathName()
FROM Items

Listing 3-31:	 Adding the ROWGUIDCOL column to the view.

Similarly, the query on the CTE in Listing 3-32 will fail because the ROWGUIDCOL is not
visible to the PathName() function.

122

Chapter 3: Accessing FILESTREAM Data from Client Applications

;WITH cte AS (
 SELECT
 ItemNumber,
 ItemImage
 FROM Items
)
SELECT
 ItemNumber,
 ItemImage.PathName()
FROM cte

/*-- Output
Msg 5539, Level 16, State 1, Line 1
The ROWGUIDCOL column associated with the FILESTREAM being used is not visible
*/

Listing 3-32:	 Using a CTE to show that the ROWGUIDCOL must be visible to the PathName() query.

Again, because the CTE does not include the ROWGUIDCOL column, a call to the
PathName() on any of the columns will generate an error. For the same reason, the query
in Listing 3-33 will also fail.

SELECT
 ItemNumber,
 ItemImage.PathName()
FROM (
 SELECT
 ItemNumber,
 ItemImage
 FROM Items
) a

/*-- Output
Msg 5539, Level 16, State 1, Line 1
The ROWGUIDCOL column associated with the FILESTREAM being used is not visible
where method PathName is called.
*/

Listing 3-33:	 The ROWGUIDCOL must be visible to the PathName() query.

The SELECT statement does not include the ROWGUIDCOL column, so the PathName()
query generates an error.

123

Chapter 3: Accessing FILESTREAM Data from Client Applications

SqlFileStream Class Reference

The SqlFileStream class represents the FILESTREAM data file associated with the
BLOB data stored in a FILESTREAM cell. This class exposes the BLOB as a sequence
of bytes.

SqlFileStream is derived from System.IO.Stream and resides in the System.
Data.Sqltypes namespace. To use the SqlFileStream class, you need a reference
to assembly System.Data in System.Data.dll. (SqlFileStream was added to the
Framework with.NET Framework 3.5 SP 1 or later, which also includes 2.0 SP 2 and
3.0 SP 2.)

Instantiating a SqlFileStream object

SqlFileStream provides two constructors that you can use to instantiate an object with
different levels of control over the file being accessed. We have seen an example of the
basic constructor earlier in this chapter. Listing 3-34 shows the simple constructor that we
saw earlier.

// Open and read file using SqlFileStream Class
SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Read);

Listing 3-34:	 C# code that opens a FILESTREAM data file for read access.

•	 filePath – This is the logical path to the physical file associated with the
FILESTREAM data value. The logical path is retrieved by a call to the PathName()
function on the FILESTREAM column on the specific row in the table.

•	 txContext – This is the FILESTREAM transaction context associated with the current
transaction. Note that you need an active transaction even to read FILESTREAM data
when accessing through I/O streaming.

124

Chapter 3: Accessing FILESTREAM Data from Client Applications

•	 FileAccess – This parameter specifies the required file access mode. The possible
values are:

•	 FileAccess.Read – Opens the FILESTREAM data file for reading. The file pointer
is placed at the beginning of the file.

•	 FileAccess.Write – Opens the FILESTREAM data file for writing.

•	 FileAccess.ReadWrite – Opens the FILESTREAM data file for reading and
writing. The file pointer is placed at the beginning of the file. You can use the
Seek() method to move the file pointer to specific locations in the file and make
partial updates, or to move to the end of the file to append content.

SqlFileStream provides another version of the constructor that gives more
control over the FILESTREAM data file being opened. Listing 3-35 shows an example
that demonstrates the advanced SqlFileStream constructor.

// Open and read file using SqlFileStream Class
SqlFileStream fs = new SqlFileStream(filePath, txContext, FileAccess.Read,
 FileOptions.SequentialScan, 0);

Listing 3-35:	 Using the advanced FILESTREAM constructor.

This version of the SqlFileStream constructor allows you to specify more options
when opening the FILESTREAM data file. The additional parameters enable you to
optimize the FILESTREAM operations.

The first three parameters are the same as for the basic FILESTREAM constructor which
we discussed earlier. The FileOptions parameter enables you to specify additional flags
that inform the system about your intended file access pattern and optimize the opera-
tions accordingly. For example, Listing 3-35, above, tells the system that you intend to use
the file sequentially; the system uses this information to optimize FILESTREAM access
because it knows in advance that you will not move the file pointer backwards or jump
into a random location in the file.

125

Chapter 3: Accessing FILESTREAM Data from Client Applications

The other options that you can specify are:

•	 FileOptions.None – Indicates that you do not want to specify any additional flags.

•	 FileOptions.WriteThrough – Instructs the system to send writes directly to disk,
bypassing any intermediate caches.

•	 FileOptions.Asynchronous – Informs the system that you intend to use the file
for asynchronous reading and writing.

•	 FileOptions.RandomAccess – Informs the system that you might access the
file randomly. The system will use this information to optimize file caching for
random access.

•	 FileOptions.SequentialScan – Informs the system that you will use the file
sequentially. When this flag is specified, the system optimizes the file operations on
the basis that you will not access the file backwards or jump into a random location
in the file.

Note that using any option other than those listed above will result in an
ArgumentOutOfRangeException error.

The last parameter in Listing 3-35 specifies the default file allocation size while creating
the file. You can specify 0 to instruct the system to use the default size specified by the
NTFS volume.

Note, also, that if an error occurs when calling the constructor, the current transaction
should be rolled back.

SqlFileStream exposes a number of methods that enable you to manipulate the
FILESTREAM data described below.

•	 BeginRead()– Begins an asynchronous read operation.

•	 BeginWrite()– Begins an asynchronous write operation.

126

Chapter 3: Accessing FILESTREAM Data from Client Applications

•	 Close()– Closes the FILESTREAM data file. This should be done before the
transaction is committed or rolled back.

•	 CopyTo()– Copies all the bytes from the current stream to a destination stream.

•	 EndRead()– Waits for a pending asynchronous read to complete.

•	 EndWrite()– Ends an asynchronous write operation.

•	 Flush()– Clears buffers and forces the data to be written to the FILESTREAM data file.

•	 Read()– Reads a sequence of bytes from the FILESTREAM data file.

•	 ReadByte()– Reads a byte from the FILESTREAM data file.

•	 SetLength()– Sets the length of the current stream.

•	 Write()– Writes a sequence of bytes into the FILESTREAM data file.

•	 WriteByte()– Writes a byte into the FILESTREAM data file.

For additional reference, see the MSDN documentation at: http://brurl.com/fs5.

OpenSqlFilestream API Reference

OpenSqlFilestream() is a Win32 API function exposed by the SQL Server Native
Client that gives you access to the FILESTREAM data file. This function returns a Win32
file handle pointing to the FILESTREAM data file associated with a given FILESTREAM
data value.

The OpenSqlFilestream API is exposed from the dynamic link library sqlncli.dll.
The declaration of the various symbols for accessing the OpenSqlFilestream API
function is found in header file sqlncli.h, and the static library that you need to link
is sqlncli.lib. These files can be found in the Include and Lib folders of your SDK
directory respectively.

http://brurl.com/fs5

127

Chapter 3: Accessing FILESTREAM Data from Client Applications

The default location is C:\Program Files\Microsoft SQL Server\100\SDK\
Include, but you might find it in a different location, depending upon where you
installed SQL Server 2008.

The code snippet in Listing 3-36 shows an example that opens a FILESTREAM data file
using the OpenSqlFilestream API function.

//Get a handle to the FILESTREAM data using OpenSqlFileStream API
HANDLE srcHandle = INVALID_HANDLE_VALUE;
srcHandle = OpenSqlFilestream (dstFilePath, SQL_FILESTREAM_READ, 0,
 transactionToken,cbTransactionToken, 0);

Listing 3-36:	 Opening a FILESTREAM data file for READ access with C++ using Win32 API

OpenSqlFileStream().

The first argument (dstFilePath) is the logical path to the FILESTREAM data file,
retrieved by a call to the PathName() function on the FILESTREAM column. The second
argument specifies the file access level required. This argument can take one of the values
listed below.

•	 SQL_FILESTREAM_READ – Opens the FILESTREAM data file for reading. The file
pointer is placed at the beginning of the file.

•	 SQL_FILESTREAM_WRITE – Opens the FILESTREAM data file for writing. The file
pointer is placed at the beginning of the file. A write operation will overwrite the
existing content in the file.

•	 SQL_FILESTREAM_READWRITE – Opens the FILESTREAM data file for reading and
writing. The file pointer is placed at the beginning of the file. You can use the Seek()
method to move the file pointer to specific locations in the file and make partial
updates, or to move to the end of the file to append content.

128

Chapter 3: Accessing FILESTREAM Data from Client Applications

The next argument in Listing 3-36 specifies additional flags that help the system to
optimize the requested file operation. The different values this parameter can take are
described below.

•	 SQL_FILESTREAM_OPEN_NONE – Indicates that you do not want to specify any
additional flags.

•	 SQL_FILESTREAM_OPEN_FLAG_NO_WRITE_THROUGH – Instructs the system to send
writes directly to disk, bypassing any intermediate caches.

•	 SQL_FILESTREAM_OPEN_FLAG_ASYNC – Informs the system that you intend to use
the file for asynchronous reading and writing.

•	 SQL_FILESTREAM_OPEN_FLAG_RANDOM_ACCESS – Informs the system that you
might access the file randomly. The system will use this information to optimize file
caching for random access.

•	 SQL_FILESTREAM_OPEN_FLAG_SEQUENTIAL_SCAN – Informs the system that
you will use the file sequentially. When this flag is specified, the system optimizes the
file operations on the basis that you will not access the file backwards or jump into a
random location in the file.

•	 SQL_FILESTREAM_OPEN_FLAG_NO_BUFFERING – Requests the system to open the
file with no buffering support.

The next argument in Listing 3-36 (transactionToken) is the FILESTREAM trans-
action context retrieved by calling T-SQL function GET_FILESTREAM_TRANSACTION_
CONTEXT(). This is followed by another parameter, cbTransactionToken, which
specifies the size of the buffer that stores the FILESTREAM transaction context.

The final parameter in Listing 3-36 specifies the initial allocation size of the data file
in bytes. This parameter is ignored when the file is opened for READ operation. If this
parameter is NULL, the system will use the default allocation size.

129

Chapter 3: Accessing FILESTREAM Data from Client Applications

Note that FILESTREAM data can be accessed using the OpenSqlFilestream() function
only if the application connects to SQL Server using Windows authentication.

If OpenSqlFilestream()succeeds, it returns a valid handle to the FILESTREAM data
file associated with the logical path name passed into the function as the first parameter.
If the function fails, it returns INVALID_HANDLE_VALUE. The handle value returned
by this function can be used to manipulate the FILESTREAM data associated with
the handle. The Win32 API functions below can be used on the handle returned by
OpenSqlFilestream() function.

•	 ReadFile() – Reads information from the FILESTREAM data file.

•	 WriteFile() – Writes information into the FILESTREAM data file.

•	 TransmitFile() – Used to transmit FILESTREAM data over a socket.

•	 SetFilePointer() – Moves the file pointer to a desired location in the disk
file associated with the handle. The next read/write operation will start from the
new location.

•	 SetEndOfFile() – Truncates the file at the current file pointer position.

•	 FlushFileBuffers() – Writes the data in all the buffers associated with a file into
the disk.

•	 CloseHandle() – Closes the FILESTREAM file handle. If the table has UPDATE
triggers, they will be fired when the FILESTREAM file handle is closed.

Note that the FILESTREAM data handle cannot be used with any Win32 APIs other than
those listed above. If you pass the handle to any other Win32 API function, you will get an
ERROR_ACCESS_DENIED error.

The FILESTREAM file handle should be closed by calling CloseHandle() before the current
transaction is committed or rolled back.

130

Chapter 3: Accessing FILESTREAM Data from Client Applications

Summary

When accessing FILESTREAM data through the Win32 or .NET interfaces exposed by
SQL Server, you can get better performance in most cases because SQL Server memory
is not used for processing the BLOB data. In addition, your code can benefit from the
caching and streaming capabilities of the NTFS. Any.NET applications can use the
SqlFileStream() class and Win32 applications can use the OpenSqlFilestream()
API to gain streaming access to the FILESTREAM data.

A FILESTREAM transaction context, and the logical path name to the FILESTREAM
data file to be processed, are two basic ingredients that you will need prior to accessing a
BLOB value stored in the FILESTREAM cell. Once an explicit SQL Server transaction has
been started, the FILESTREAM transaction context can be retrieved by calling the T-SQL
function GET_FILESTREAM_TRANSACTION_CONTEXT(). The logical path name to the
FILESTREAM data file can be retrieved by calling the new case-sensitive intrinsic function
PathName() on the FILESTREAM column.

OpenSqlFilestream() returns a file handle to the FILESTREAM data file, which can
be used to read and write information stored in the FILESTREAM data file. The .NET
class SqlFileStream encapsulates the FILESTREAM data file and provides a number
of methods that allow you to read and write information into the FILESTREAM data file.
The FILESTREAM file handle, or the SqlFileStream object, should be closed before the
transaction is committed or rolled back.

131

Chapter 4: FILESTREAM with Entity
Framework and LINQ to SQL

In this chapter, we run through some labs that demonstrate how applications that employ
ADO. NET Entity Framework (EF) or LINQ to SQL in their data access layer can interact
with the FILESTREAM feature.

The focus will be on the FILESTREAM end of the equation, rather than on the specifics of
the given data access framework or technology, and the chapter adopts a highly practical
approach, consisting of the worked labs below.

•	 Lab 2: Using FILESTREAM data with EF. This lab actually comprises two
		 separate examples:

•	 Lab 2a: a simple application that adopts the "default" EF approach of using
	 T-SQL to access the FILESTREAM data

•	 Lab 2b: a custom approach that allows continued used of streaming I/O access
	 with SqlFileStream.

•	 Lab 3: Using FILESTREAM data with LINQ to SQL.

As you can see, there is greater emphasis in this chapter on EF than on LINQ to SQL. The
latter has been characterized by Microsoft as being for "strongly-typed LINQ access to SQL
Server, for rapidly developed applications" or, less formally by members of the Microsoft
developer community, as "the quick and dirty way to do it." In contrast, ADO.NET Entity
Framework "provides strongly-typed LINQ access for applications requiring a more flexible
Object Relational mapping, across Microsoft SQL Server and third-party databases."

132

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

If it sounds like LINQ to SQL plays second fiddle to EF's lead violin, then I'd say that this
is a fair reflection of community opinion and of the development of the two technologies
by Microsoft; the former is being "supported" on an ongoing basis, the latter is being
actively developed and improved. Nevertheless, LINQ to SQL has an endearing simplicity
that continues to make it popular among its users, hence its inclusion here.

Before we get started, a note of sensible caution: the labs in this chapter demonstrate a
particular way to accomplish tasks with these technologies; they don't attempt to cover
all possible approaches, nor do we guarantee that the approach shown will be the best
one for your specific environment. Use the labs as a starting point, then adapt them as
necessary for your needs, and bear in mind that you'll also need to rework the code to
take into account the specific nature of your security architecture, and so on.

Lab 2: FILESTREAM and Entity Framework

ADO.NET EF has become one of the most widely discussed and used object relational
mapping (ORM) frameworks for .NET, and many questions have been raised on various
forums regarding the use of EF with FILESTREAM columns.

As we have seen, one of the key benefits of FILESTREAM storage is that the data can be
accessed using Win32 or Managed APIs, which provide streaming performance. Though
EF allows you to access FILESTREAM columns, the access is provided through the
T-SQL interface. At the time of writing this, EF does not provide a built-in way to access
FILESTREAM data through Win32 or Managed APIs, so you might want to reconsider
your decision to use EF to access FILESTREAM data and instead write some custom code
that performs the FILESTREAM operations within an EF project.

Our labs demonstrate both approaches. Lab 2a creates a basic application that uses EF to
access FILESTREAM data directly, and hence access the FILESTREAM data using T-SQL.
Lab 2b shows a technique that allows us to continue to use the SqlFileStream class to
access the FILESTREAM data through EF.

133

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Each lab will follow the same basic structure.

1.	 Create a stored procedure through which EF will access the FILESTREAM data.

2.	 Create a console application project.

3.	 Add an Entity Data Model Object to the project.

4.	 Create the ORM.

5.	 Insert a row with FILESTREAM data into the table.

6.	 Retrieve rows along with FILESTREAM data.

In both cases, the goal is to help you to get started with writing EF applications that read
and write FILESTREAM data. We will examine only a few basic features offered by ADO.
NET EF, a more detailed discussion of which is beyond the scope of this book.

Rebuilding the sample database

Before we get started with the labs, we need to create a new sample database. Run the
T-SQL script in Listing 4-1 to rebuild the NorthPole sample database.

USE master
GO

-- ---
-- If the sample database exists, drop it and re-create
-- ---
IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

134

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPoleDB,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter4\NorthPoleDB.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter4\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter4\NorthPole_log.ldf')
GO

Listing 4-1:	 Rebuilding the sample NorthPole database.

Next, create a table to store the FILESTREAM data using the code in Listing 4-2.

USE NorthPole
GO

CREATE TABLE [dbo].[Items](
 [ItemID] INT IDENTITY PRIMARY KEY,
 [ItemGuid] UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,
 [ItemNumber] VARCHAR(20),
 [ItemDescription] VARCHAR(50),
 [ItemImage] VARBINARY(MAX) FILESTREAM NULL
)
GO

Listing 4-2:	 Creating a table for the FILESTREAM data.

Lab 2a: A simple EF application using T-SQL access

In this lab we'll create a simple application that will treat the FILESTREAM column as
a plain VARBINARY(MAX) column. This is the default way Entity Framework handles
FILESTREAM data. For applications that seek to leverage the streaming benefits of
FILESTREAM, this isn't a suitable approach, so you may want to review the alternative
approach in Lab 2b.

135

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Create the stored procedure interface

Our first step is to create a stored procedure for adding new items into the table (Listing
4-3). This stored procedure will be invoked from the EF project.

CREATE PROCEDURE [dbo].[SaveItem] (
 @ItemNumber VARCHAR(20),
 @ItemDescription VARCHAR(50),
 @ItemImage VARBINARY(MAX)
) AS
INSERT INTO dbo.Items(
 ItemGuid,
 ItemNumber,
 ItemDescription,
 ItemImage
)
SELECT
 NEWID(),
 @ItemNumber,
 @ItemDescription,
 @ItemImage

RETURN SCOPE_IDENTITY()

Listing 4-3:	 Creating a stored procedure to add items to the table.

Note that this procedure accepts item information including the image, which will go
to the FILESTREAM column of the table. Because we are using the T-SQL interface for
writing into the FILESTREAM column, a VARBINARY(MAX) variable is used. Remember
that the FILESTREAM columns appear as VARBINARY(MAX) data type values when
accessing them from T-SQL.

136

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Creating a console application project

The next step is to create a simple application. For simplicity, we will create a console
application. Open Visual Studio, select File | New | Project, and then select Console
Application. You might want to select your favorite .NET programming language (VB
or C#) at this stage. The programming language will not make much difference because
there is not much code in this lab. We present C# code in this chapter; the sample code
for VB is supplied separately in the download.

Adding an Entity Data Model

The next step is to add an ADO.NET Entity Data Model to the project. Right-click on
your project in Solution Explorer, and select Add | New Item. Then select ADO.NET
Entity Data Model (Figure 4-1).

Figure 4-1:	 Add New Item dialog box.

137

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

We will name the Entity Data Model NorthPoleModel.edmx. Click OK to proceed to the
Entity Data Model Wizard (Figure 4-2).

Figure 4-2:	 Generating the model.

Select Generate from database, because we have already created the database needed
for this lab. The wizard will generate EF wrapper classes for the selected database objects
when completed. Next, we choose the data connection (Figure 4-3).

138

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

 Figure 4-3:	 Choosing the data connection.

You may remember that, for accessing FILESTREAM through Win32 or Managed APIs,
Windows authentication was necessary. However, as mentioned earlier, EF accesses
FILESTREAM data through T-SQL only. Therefore, when you enter your database
credentials, you can use either Windows authentication or SQL Server authentication.

The next step allows you to select the database objects you wish to include in your data
model (Figure 4-4). We'll select the Items table and the stored procedure SaveItem, and
name the data model NorthPoleModel.

139

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-4:	 Choosing the database objects.

Clicking Finish saves the information and opens the Model Designer window.

Configuring object relational mapping

The next step is to review and configure the mapping of properties and functions. The
Entity Data Model designer creates data model objects based on the selections we made
using the wizard. In our case, we selected the Items table, so you will see a model object
named Item that represents each row in the Items table (Figure 4-5).

140

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-5:	 The Item data model object.

Click on the Item object to open the Mapping Details window (Figure 4-6). If the window
does not open automatically on your system, right-click the Item entity and select Table
Mapping from the shortcut menu.

Figure 4-6:	 The Mapping Details window.

141

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Take a look at the mapping of the ItemImage column; it is a FILESTREAM column but
it is mapped to the Binary data type. EF does not understand FILESTREAM values. It sees
FILESTREAM columns as VARBINARY(MAX) data type values.

The next step is to create a mapping for the stored procedure we created for saving items.
Click on the Map Entity to Functions button on the left side of the Mapping Details
window, and select the stored procedure from the drop-down list provided for the insert
operation (Figure 4-7).

Figure 4-7:	 Creating a mapping for the stored procedure.

With this, we are done with the mapping and it is time to go ahead and write the code
that adds a new item into the table using EF.

142

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Adding a row to the table

Having completed the object relational mapping, it is quite easy to perform operations
that manipulate the data stored in the associated tables. The C# code in Listing 4-4 adds a
new record into the Items table. One of the columns being populated is a FILESTREAM
column. The content of a disk file is read and copied into the ItemImage property of the
EF class Item, which represents the FILESTREAM column in the table.

static void Main(string[] args)
{
 Item itm = new Item();
 itm.ItemNumber = "IT001";
 itm.ItemDescription = "Microsoft Mouse";
 itm.ItemImage =
 System.IO.File.ReadAllBytes("c:\\temp\\microsoftmouse.jpg");

 NorthPoleEntities npe = new NorthPoleEntities();
 npe.AddObject("Items", itm);
 try
 {
 npe.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.Write(ex.Message);
 }

 npe.Dispose();
}

Listing 4-4:	 Adding a new record to the Items table using EF.

Note that there is nothing FILESTREAM-specific in this code. Though the column being
populated is a FILESTREAM column, the code treats it as a VARBINARY(MAX) column.

143

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Retrieving information from the database

Now, let us see how to retrieve data from FILESTREAM columns using EF. Just as we
saw in the previous example, there is no FILESTREAM-specific code involved in this step
either. EF treats FILESTREAM columns as VARBINARY(MAX) columns, and therefore
the code that we will write will be the same for FILESTREAM and VARBINARY(MAX)
columns.

The code in Listing 4-5 searches for a record with ItemNumber IT001, and returns an
Item object that contains the information about the given record. The last part of the
code reads the FILESTREAM value stored in the ItemImage column and writes to a disk
file. Add the code to the Main() method in the Program class. You must also import the
System.Data.Objects namespace at the top of your code file.

NorthPoleEntities npe = new NorthPoleEntities();
foreach (Item itm in npe.Items.Where(
 "it.ItemNumber == IT001"))
{
 System.IO.File.WriteAllBytes("c:\\temp\\mm.jpg", itm.ItemImage);
}
npe.Dispose();

Listing 4-5:	 Retrieving BLOB values stored in a FILESTREAM column.

That completes Lab 2, in which we created a very simple console application that
demonstrated how to read and write FILESTREAM values using EF. Run the
application, or debug and step through the code, to see our code in action.

144

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Lab 2b: Using SqlFileStream and Entity Framework
together

In this lab, we'll create an application similar to the one from Lab 2a but one that can still
use the SqlFileStream class to access the FILESTREAM data, while at the same time
maintaining the object oriented features of Entity Framework for accessing the relational
data. This is done by retrieving the structured data using EF's mapping capabilities and
the FILESTREAM data using custom code developed in an application's data access layer.

Modifying the stored procedure interface

To help support the needs of the application, we will create two additional stored
procedures in the sample database.

The first, Items_Insert, effectively replaces the SaveItem stored procedure from
the previous lab. It is used to create a new row in the Items table and ensures that the
FILESTREAM data file for the row is created by setting a dummy value (Listing 4-6).

CREATE PROCEDURE [dbo].[Items_Insert]
 @ItemGuid uniqueidentifier,
 @ItemNumber nvarchar(20),
 @ItemDescription nvarchar(50)
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 INSERT INTO [Items] (ItemGuid, ItemNumber, ItemDescription, ItemImage)
 VALUES (@ItemGuid, @ItemNumber, @ItemDescription, 0x);

 SELECT SCOPE_IDENTITY() AS NewItemID;
END

Listing 4-6:	 Creating a stored procedure to create a row with a dummy FILESTREAM value.

145

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

The stored procedure takes three arguments that are mapped directly to fields in the
Items table. There is no input parameter for the ItemImage field because we provide a
default dummy value of 0x (zero-length binary value). This ensures that a FILESTREAM
data file will be created for the new record, but the file is a zero-length (empty) file.
We also select the value of the SCOPE_IDENTITY() function as a new field with name
NewItemID. Because ItemID is an IDENTITY column, we will use the value of that field
to update the ItemID scalar property value of the stored Item object instance with the
value assigned by the database engine.

The second new stored procedure, GetSqlFileStreamInfo (Listing 4-7), will return the
values necessary to create a SqlFileStream object instance for the FILESTREAM data
of a given item (identified by the ItemID parameter). The stored procedure will return
a single row containing the path name of the FILESTREAM data file, the transaction
context of a previously started transaction and the length of the FILESTREAM data file.

CREATE PROCEDURE [dbo].[GetSqlFileStreamInfo]
 @ItemID int
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 SELECT I.ItemImage.PathName() AS FilePath,
 GET_FILESTREAM_TRANSACTION_CONTEXT() AS "Context",
 DATALENGTH(I.ItemImage) AS "Size"
 FROM Items I
 WHERE I.ItemID = @ItemID
END

Listing 4-7:	 Creating a stored procedure to retrieve the SqlFileStream constructor values.

146

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Creating a console application project

The next step is to create a simple application. We will create another console application.
Open Visual Studio, select File | New | Project, and then select Console Application. You
might want to select your favorite .NET programming language (VB or C#) at this stage.
The programming language will not make much difference because there is not much
code in this lab. We present C# code in this chapter; the sample code for VB is supplied
separately in the download.

Provide a suitable name for your project and solution, such as FILESTREAM Chapter 4
Lab 2b.

Adding an Entity Data Model

The next step is to add an ADO.NET Entity Data Model to the project. Right-click on
your project in Solution Explorer, and select Add | New Item. Then select ADO.NET
Entity Data Model (Figure 4-8).

Figure 4-8:	 The Add New Item dialog box.

147

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

We will name the Entity Data Model NorthPoleModel.edmx. Click OK to proceed to the
Entity Data Model Wizard (Figure 4-9).

Figure 4-9:	 Generating the model.

Select Generate from database, because we have already created the database needed
for this lab. The wizard will generate EF wrapper classes for the selected database objects
when completed. Next, we choose the data connection (Figure 4-10).

In Lab 2a, it was noted that using SQL Server authentication to connect to the database
was acceptable because we would only access the FILESTREAM data using T-SQL. In
this lab, we must use Windows authentication because the application will access the
FILESTREAM data using the Managed APIs.

148

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-10:	 Choosing the data connection.

The next step allows us to select the database objects we wish to include in our data
model (Figure 4-11). We'll select the Items table and the stored procedures Insert_
Items and GetSqlFileStreamInfo, and name the data model NorthPoleModel.

149

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-11:	 Choosing the database objects.

Clicking Finish, saves the information and opens the Model Designer window.

Configuring object relational mapping

We will now make some modifications to the default object relational mapping that was
created. Most importantly, we will remove the mapping of the ItemImage field so that it
will not be included in the standard SELECT statements generated by Entity Framework.

Right-click on the ItemImage scalar property in the Item entity on the entity diagram
and click Delete. This effectively removes the ItemImage field from the mapping.

150

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Next, we will map the Items_Insert stored procedure so that it becomes the Insert
Function for the Items table. In the Mapping Details window click on the Map Entity to
Functions button, found on the right-hand side of the window (Figure 4-12).

Figure 4-12:	 The Map Entity to Functions button.

Click on the <Select Insert Function> row and select Items_Insert from the drop-down
list. The parameters for the function are mapped correctly by default. In the Result
Column Bindings node, type NewItemID (the name of the field in the return set of our
Items_Insert stored procedure) and press Enter. The designer will automatically and
correctly map this value to the ItemID scalar property.

Finally, we will map the GetSqlFileStreamInfo stored procedure to a function in the
data access layer. To add a function, right-click empty space in the Entity Model designer
and click Add > Function Import. The Add Function Import dialog box (Figure 4-13)
opens. Select the GetSqlFileStreamInfo stored procedure from the Stored Procedure
Name drop-down list. Create a suitable name for the function, which in our example we
will keep the same as the stored procedure name.

Our stored procedure returns a single row containing three columns. The structure of
that row does not map to our Item entity though, so we will let the Entity Framework
designer create a new class whose scalar properties map to the fields returned by the
stored procedure.

151

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

First, click the Get Column Information button, then click the Create New
Complex Type button. This will automatically change the Returns a Collection
Of option group value to Complex. The designer will assign a default name of
GetSqlFileStreamInfo_Result to the new complex type.

Figure 4-13:	 The Add Function Import dialog box.

You can see the effects of these steps in the Model Browser window.

152

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Adding a row to the table

We will create a new method in the Program.cs file to insert a new item in the database.
The code for this method is shown in Listing 4-8. This code will go in the Program class.

static int InsertItem()
{
 Item NewItem = new Item();

 NewItem.ItemNumber = "IT002";
 NewItem.ItemGuid = System.Guid.NewGuid();
 Console.WriteLine("New Item GUID: {0}",
 NewItem.ItemGuid.ToString());
 NewItem.ItemDescription = "Microsoft Mouse";

 using (NorthPoleEntities e = new NorthPoleEntities())
 {
 bool OpenedConn = false;

 if (e.Connection.State != System.Data.ConnectionState.Open)
 {
 e.Connection.Open();
 OpenedConn = true;
 }

 try
 {
 // Start a transaction explicitly to ensure adding the row and
 // creating the BLOB are part of the same transaction
 // System.Transactions.TransactionScope can be used if required
 using (System.Data.Common.DbTransaction tran =
 e.Connection.BeginTransaction())
 {
 e.Items.AddObject(NewItem);
 // Because this uses a stored procedure (instead of
 // generated T-SQL)
 // this will create a FILESTREAM data file
 // If adding records using a stored proc is not desired,
 // then this can be set as a DEFAULT
 e.SaveChanges();

153

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

 // Now read the item using SqlFileStream, leveraging
 // the stored procedure that's mapped as a function
 GetSqlFileStreamInfo_Result info =
 e.GetSqlFileStreamInfo(NewItem.ItemID).ToList()[0];

 // If the path is NULL, a BLOB file does not exist
 // and a BLOB must be created first
 using (SqlFileStream fs = new SqlFileStream(
 info.FilePath, info.Context, FileAccess.Write,
 FileOptions.WriteThrough, 0L))
 using (FileStream local = new FileStream(
 "C:\\temp\\MicrosoftMouse.jpg",
 FileMode.Open, FileAccess.Read))
 {
 local.CopyTo(fs);
 }

 tran.Commit();
 }
 }
 finally
 {
 // If the connection was opened by this procedure, close it
 if (OpenedConn) e.Connection.Close();
 }
 }

 return NewItem.ItemID;
}

Listing 4-8:	 InsertItem method.

This code first creates a new instance of the Item class and, for demonstration purposes,
assigns values to the ItemNumber, ItemGuid and ItemDescription properties. Then,
an instance of the Entity Framework Object Context (NorthPoleEntities class) is
created. If the object context does not have an open connection to the database, we open
the connection and keep track of the fact that we did so (this means that we can properly
close it when the method ends).

154

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

As we have already discussed, access to FILESTREAM data must occur in the context of
a SQL Server transaction, so we start a transaction using the BeginTransaction()
method on the Connection object associated with the object context. As part of that
transaction, we add the newly created Item object to the object context and save the
changes to the database.

Saving the changes to the database causes the ItemID property of the NewItem object
to be set to the value assigned by the database engine (recall the mapping we modified
earlier). We use this value as the parameter for the GetSqlFileStreamInfo method.
Even though we know that the GetSqlFileStreamInfo method can only return a
single object instance, because the SELECT statement in the stored procedure filters by
the table's primary key (ItemID), the framework doesn't have that knowledge and will
return a set of GetSqlFileStreamInfo_Result objects. We will simply take the first
and only item in that list.

Using the values in the GetSqlFileStreamInfo_Result object, we can create a new
SqlFileStream instance for write access. From the local file system, we open a sample
image file using standard .NET file I/O APIs. We then copy the bytes from the local file to
the SqlFileStream.

Finally, we commit the transaction and, if we opened it, close the database connection.

Retrieving information from the database

To end this lab, we are going to add some code that can retrieve a specific item (row) from
the database. We will use the Entity Framework object relational mapping to retrieve the
relational data, but use streaming I/O access to work with the FILESTREAM data.

Listing 4-9 shows the ReadItem method to be added to the Program class. This code
requires that you import two namespaces in your code file: System.Data.SqlTypes
and System.IO.

155

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

static void ReadItem(int itemId)
{
 // Obtain info about the object
 using (NorthPoleEntities e = new NorthPoleEntities())
 {
 // This does not cause the BLOB to be read with T-SQL as long as
 // the BLOB column is in a different object,
 // or excluded from the model altogether (preferred)
 Item i = e.Items.SingleOrDefault(itm => itm.ItemID == itemId);

 if (i != null)
 {
 Console.WriteLine("Read Item GUID: {0}", i.ItemGuid.ToString());
 bool OpenedConn = false;

 try
 {
 // Ensure the connection is open before
 // attempting to start a transaction
 // NOTE: connection is probably closed
 if (e.Connection.State != System.Data.ConnectionState.Open)
 {
 e.Connection.Open();
 OpenedConn = true;
 }

 // There are also ways to use
 // Systems.Transactions.TransactionScope
 // to enlist in an existing transaction
 // at the business logic level if desired
 using (System.Data.Common.DbTransaction tran =
 e.Connection.BeginTransaction())
 {
 // Now read the item using SqlFileStream,
 // leveraging the stored
 // procedure that's mapped as a function
 GetSqlFileStreamInfo_Result info =
 e.GetSqlFileStreamInfo(i.ItemID).ToList()[0];

 // If there is a BLOB, there is a file path
 if (!string.IsNullOrEmpty(info.FilePath) &&
 info.Size > 0)
 {
 using (MemoryStream ms = new MemoryStream())

156

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

 {
 using (SqlFileStream fs = new SqlFileStream(
 info.FilePath, info.Context, FileAccess.Read,
 FileOptions.WriteThrough, (long)info.Size))
 {
 fs.CopyTo(ms);
 }

 // TODO: Do some things with the memory stream,
 // or convert to byte array if serialization is required
 }
 }

 tran.Commit();
 }

 }
 finally
 {
 if (OpenedConn) e.Connection.Close();
 }
 }
 }
}

Listing 4-9:	 ReadItem method.

This method first creates an Entity Framework object context (NorthPoleEntities
class) and retrieves the desired item. In this case, we used a lambda expression to indicate
which item we are looking for. Lambda expressions may look a little intimidating, but the
basics can be learned easily. Here, we are indicating that, in the collection of all Items,
we are looking for a single item that matches the predicate (think WHERE-clause) ItemID
== ItemID, where the first ItemID is the scalar property and the second ItemID is the
parameter value of the ReadItem function. We use the .SingleOrDefault() method to
ensure that if there is no item with the specified ItemID, the object context will return a
null reference instead of throwing an exception.

157

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

If we successfully retrieved the item's relational data from the database, we will
create a new SQL Server transaction after ensuring that we have an open database
connection (much like we did for the InsertItem method). We again leverage the
GetSqlFileStreamInfo method that maps to the GetSqlFileStreamInfo stored
procedure to retrieve the information we need to create a SqlFileStream instance.
Before we create the instance, we check if there is a valid filePath value (a null value
would indicate there is no FILESTREAM data file for this data row) and that the size of
the file is greater than zero (there is no sense in reading a zero-length file). We are
copying the SqlFileStream contents to a MemoryStream which can then be used
for other purposes.

To test the functionality in this lab, add the code in Listing 4-10 to the Main() method in
the Program class.

int NewItemId = 0;

NewItemId = InsertItem();
ReadItem(NewItemId);

Console.Write("Done...");
Console.ReadKey();

Listing 4-10:	 Sample code for void Main().

Now compile and run the code. You should find that the program outputs the same
Item GUID twice, indicating that the item that was saved to the database using the
InsertItem() method was successfully read back using the ReadItem() method.

158

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Lab 3: FILESTREAM and LINQ to SQL

This lab presents a very basic example that will help you to get started writing applica-
tions that use LINQ to SQL classes to access the FILESTREAM data. Just as we saw with
the default EF approach in Lab 2a, LINQ to SQL also accesses FILESTREAM data through
T-SQL interfaces only; it is not capable of accessing the FILESTREAM data using Win32
or Managed APIs.

To complete this lab, we will follow the procedure below.

1.	 Create a console application project.

2.	 Add a LINQ to SQL class object to the project.

3.	 Create a LINQ to SQL wrapper class for the Items table.

4.	 Use LINQ to SQL to add a new row with a FILESTREAM value to the table.

5.	 Query the table using LINQ to SQL and retrieve FILESTREAM data.

Creating a new console application project

Let's get started. Open Visual Studio, and create a new console application project by
selecting File | New | Project as demonstrated in the previous labs.

Adding a LINQ to SQL class

The next step is to add a LINQ to SQL class to the project. Right-click on the project in
the Solution Explorer and select Add | New Item. Then, in the Add New Item dialog box,
select LINQ to SQL Classes, and rename the class to NorthPoleDB (Figure 4-14).

159

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-14:	 Adding a LINQ to SQL class.

Click Add to add the class to the current project. This will open the Object
Relational Designer. The designer window will be empty because we have not
yet done any mapping.

Defining object relational mappings

The next step is to define object relational mappings for the Items table. Open the Server
Explorer window by clicking the Server Explorer hyperlink in the Object Relational
Designer window (Figure 4-15).

160

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Figure 4-15:	 The Server Explorer.

Locate the Items table under the Tables node, then drag and drop the Items table into
the Object Relational Designer window (Figure 4-16).

Figure 4-16:	 The Items table in the Object Relational Designer.

161

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Notice that LINQ to SQL automatically maps FILESTREAM columns to System.Data.
Linq.Binary data type. You can see this by looking at the properties of the ItemImage
property of the mapping object, as shown in Figure 4-17.

Figure 4-17:	 FILESTREAM mapping to the System.Data.Linq.Binary data type.

That is all you need to do. We are ready to write the code that performs FILESTREAM
data manipulation using LINQ to SQL classes.

162

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Adding a new row

Let us see how to add a new row into the Items table using LINQ to SQL classes, and
populate the FILESTREAM column. Listing 4-11 shows the C# code to do this.

static void SaveItem()
{
 Item itm = new Item();

 itm.ItemDescription = "Microsoft Mouse";
 itm.ItemGuid = System.Guid.NewGuid();

 System.Data.Linq.Binary img;
 img = new System.Data.Linq.Binary(
 System.IO.File.ReadAllBytes("c:\\temp\\MicrosoftMouse.jpg"));
 itm.ItemImage = img;
 itm.ItemNumber = "IT001";

 NorthPoleDBDataContext db = new NorthPoleDBDataContext();
 db.Items.InsertOnSubmit(itm);
 db.SubmitChanges();
 db.Dispose();
}

Listing 4-11:	 Adding a new row using LINQ to SQL.

Querying FILESTREAM data using LINQ to SQL

The final step in this lab is to see how to query and retrieve FILESTREAM data using
LINQ to SQL classes. Listing 4-12 searches for an item with a specific item number and
retrieves the FILESTREAM value associated with the row.

163

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

static void Main(string[] args)
{
 NorthPoleDBDataContext db = new NorthPoleDBDataContext();
 var itms = from p in db.Items
 where p.ItemNumber == "IT001"
 select p;

 foreach (var itm in itms)
 {
 Console.WriteLine("Item Description = {0}",
 itm.ItemDescription);
 System.IO.File.WriteAllBytes(
 "c:\\temp\\MicrosoftMouse.jpg",
 itm.ItemImage.ToArray()
);
 }
 db.Dispose();
}

Listing 4-12:	 Querying a FILESTREAM table using LINQ to SQL.

Now run your application or debug and step through the code to see how it works.

Remember, LINQ to SQL accesses FILESTREAM data through the T-SQL interface.
Streaming access to the FILESTREAM data is not available when accessing it through
LINQ to SQL. This might result in performance problems on systems that perform a large
number of FILESTREAM operations using LINQ to SQL.

Summary

We have seen how to write applications that access FILESTREAM data using
ADO.NET EF and LINQ to SQL. The former is one of the most popular object
relational mapping frameworks available for .NET. The latter offers simplicity
and remains a viable data access option, but has become less prevalent following
the introduction of Entity Framework.

164

Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL

Neither of these frameworks is ideal for working with FILESTREAM data. Both EF and
LINQ to SQL use the T-SQL interface to access the FILESTREAM data by default. This
means that the performance benefits offered by the streaming APIs are not available to
applications that use these frameworks "out of the box" to access the FILESTREAM data.
Performance may be really bad if the application performs a huge volume of FILESTREAM
operations using the native FILESTREAM mappings of either of these frameworks.

We demonstrated an approach using EF (but that is equally valid for LINQ to SQL) that
uses specialized code in order to use the technology in conjunction with streaming access
to FILESTREAM.

165

Chapter 5: FILESTREAM with ASP.NET
and Silverlight

This chapter will explain how to access FILESTREAM data from applications built
using ASP.NET and Silverlight. It will adopt a very hands-on approach, consisting of
the six labs below.

•	 Lab 4: Uploading files to a FILESTREAM database from an ASP.NET web page.

•	 Lab 5: Deploying and configuring a FILESTREAM web application on IIS.

•	 Lab 6: Creating a web handler to serve images from a FILESTREAM database.

•	 Lab 7: Displaying thumbnail images of items from a FILESTREAM database on
		 an ASP.NET web page.

•	 Lab 8: Using SqlFileStream in an N-tier scenario.

•	 Lab 9: Playing a video stored in a FILESTREAM database on a Silverlight application.

The functionalities that we try to implement in these labs are probably familiar to most
of you. The first five labs in this chapter deal with uploading and downloading image files.
Most developers will have done this numerous times in their applications, by uploading
those files to a location on the server and serving the files upon client request later. What
is different in these labs is that we will store the data in the FILESTREAM column of a
database table, then serve client requests from there.

We'll use the same sample database for Labs 4–8 in this chapter, as shown in Listing 5-1.

166

Chapter 5: FILESTREAM with ASP.NET and Silverlight

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter5\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter5\NorthPole_fs') LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter5\NorthPole_log.ldf')
GO

Listing 5-1:	 Rebuilding the sample NorthPole database.

Listing 5-2 creates the usual Items table, with a FILESTREAM column.

USE NorthPole
GO

CREATE TABLE [dbo].[Items]
 (
 [ItemID] INT IDENTITY
 PRIMARY KEY ,
 [ItemGuid] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)
GO

Listing 5-2:	 Creating the Items table.

167

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Lab 4: Uploading Files to a FILESTREAM
Database from an ASP.NET Web Page

Most websites provide some sort of functionality to upload files to the web server, usually
storing them in a disk folder and serving the files later upon client requests. In this lab,
we will see how to upload a file from an ASP.NET web page to the FILESTREAM column
of a table.

To do this, we will follow the procedure below.

1.	 Create an ASP.NET web application.

2.	 Add a database connection string to the configuration file web.config.

3.	 Design a data entry page with a file upload control.

4.	 Write the code to upload the file into a FILESTREAM database.

5.	 Run the web application and verify that the code works.

Creating a new ASP.NET web application

Open Visual Studio, and select File | New | Project. Select ASP.NET Web Application
from the project templates, and then click OK to create the project (Figure 5-1).

If you are using Visual Studio 2010, you will see options to create projects targeting a
number of different .NET frameworks such as 2.0, 3.0, 3.5, and 4.0. The features we will
explore in this lab are available in all of these .NET Framework versions but, to keep
the complexity to the minimum, we will create this project in .NET 2.0. When using
FILESTREAM in projects targeting .NET Framework versions 2.0 or 3.0, Service Pack 2
is required.

168

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-1:	 Creating a new project.

Visual Studio automatically creates a web page named default.aspx, and we will use
that page for this lab.

Adding a database connection string

The next step is to add a database connection string to the configuration file of the web
application, web.config. Locate web.config in the Solution Explorer, and double-click
on it to open the configuration file in the Visual Studio editor.

Locate the section, connectionStrings, and add a connection string that points to the
FILESTREAM database you would like to use for the labs. Listing 5-3 shows how the code
should look after the connection string has been added to the configuration file (but you
should use the data source appropriate to your own connection).

Ensure the connection string uses Windows authentication (Integrated
Security=SSPI); we have already learnt that Windows authentication is required to
access the FILESTREAM data using Win32 or Managed APIs.

169

Chapter 5: FILESTREAM with ASP.NET and Silverlight

<connectionStrings>
 <add name="NorthPoleDB"
 connectionString="Data Source=(local);Initial
 Catalog=NorthPole;
 Integrated Security=SSPI"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Listing 5-3:	 Adding a connection string to point to the FILESTREAM database.

Designing the data entry page

Next, we'll build a very simple data entry page that allows a user to enter product
information and save it into the database along with an image of the product. We
will add an HTML table to the web page and put two text boxes (for Item Number and
Item Description), a file upload control for the item image file, and a button to submit
the data.

Depending upon your preference, you might want to write your code in the XML source
editor or using the UI designer. The source code of the ASPX page is shown in Listing 5-4.

<%@ Page Language="c#" AutoEventWireup="false" CodeBehind="Default.aspx.cs"
 Inherits="fsweb._Default" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head2" runat="server">
 <title>ASP.NET FILESTREAM Application</title>
</head>
<body>
 <form id="form2" runat="server">
 <table>
 <tr>
 <td>Item Number:</td>
 <td><asp:TextBox runat="server" ID="txtItemNumber"/></td>
 </tr>

170

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 <tr>
 <td>Item Description:</td>
 <td><asp:TextBox runat="server" ID="txtItemDescription"/></td>
 </tr>
 <tr>
 <td>Item Image:</td>
 <td>
 <asp:FileUpload ID="fpItemImage" runat="server" Width="300px" />
 </td>
 </tr>
 <tr>
 <td><asp:Button runat="server" ID="btnSave" Text="Save"/></td>
 </tr>
 </table>
 </form>
</body>
</html>

Listing 5-4:	 The source code for the data entry page.

Figure 5-2 shows how your page should look after the controls have been added to
the page.

 Figure 5-2:	 The data entry page.

171

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Writing the "code-behind"

The next task is to write the code that runs behind the web page. When the user clicks
the Save button, we need to save the item information, including the image file, into the
database. In this section, we will see the code required to implement this functionality.

We will start with the import statements. Add the import statements in Listing 5-5 to the
code file associated with your web page.

using System.IO;
using System.Data.SqlClient;
using System.data;

Listing 5-5:	 Import statements.

To make our code run when the user clicks the Save button, we'll add a handler for the
Click event on the button. In a real-world scenario, you might want to do a number of
validations before saving the information into the database, such as checking whether
the user has entered all the mandatory fields. To keep the code simple in this lab, we will
skip these validations and validate only the file upload control; we will proceed with the
database call only if the user has selected a file using the file upload control provided on
the web page. This can be verified by checking the HasFile property of the file upload
control, as shown in Listing 5-6.

protected void btnSave_Click(object sender, EventArgs e)
{
 if (fpItemImage.HasFile)
 {
 SaveItem();
 }
}

Listing 5-6:	 Handler for Click event of the button.

172

Chapter 5: FILESTREAM with ASP.NET and Silverlight

The code in Listing 5-6 calls the SaveItem() function to perform the database opera-
tions, which we have not yet created. Saving the data into the database involves two steps.

1.	 Save the relational data (ItemNumber, ItemDescription).

2.	 Save the FILESTREAM data (ItemImage).

Relational data is always saved using T-SQL interface, whereas we can use either T-SQL
or Win32/Managed APIs to save the FILESTREAM data. We have learned earlier that the
FILESTREAM read-write operations should always be done using Win32 or Managed APIs
for performance reasons, so that is exactly what we will do in this lab.

Saving the relational data
The first step is to save the relational data, in this case using the SaveItemImage stored
procedure in Listing 5-7, which we can call from our web application.

CREATE PROCEDURE [dbo].[SaveItemImage]
 (
 @ItemNumber VARCHAR(20) ,
 @ItemDescription VARCHAR(50)
)
AS
 BEGIN
 INSERT INTO dbo.Items
 (ItemGuid ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)
 OUTPUT GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext ,
 inserted.ItemImage.PathName() AS filePath
 SELECT NEWID() ,
 @ItemNumber ,
 @ItemDescription ,
 0x
 END

Listing 5-7:	 Stored procedure to save item information.

173

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Note that this stored procedure inserts a dummy value into the FILESTREAM column
because, as we have already seen in Chapter 3, Win32/Managed API access to a
FILESTREAM column is possible only if the column is non-NULL.

The stored procedure returns a result set that contains the PathName(), the logical
identifier pointing to the disk file associated with the FILESTREAM column in the newly
inserted row, and a FILESTREAM transaction context of the currently active transaction.
This is done to avoid an additional database call when writing the code to save the
FILESTREAM data. For more information, refer back to Chapter 3.

Saving the FILESTREAM data

After the relational data is saved, we will execute the code to save the FILESTREAM data
using the FILESTREAM Managed API. We saw in Chapter 3 an example of how to load the
content of a disk file into the FILESTREAM column. In this case, we will obtain a stream
pointing to the file selected by the user through the FileContent property of the file
upload control (Listing 5-8).

private void SaveItem()
{
 //Create and open a database connection
 SqlConnection cn = new SqlConnection();
 cn.ConnectionString =
 System.Configuration.ConfigurationManager.ConnectionStrings[
 "NorthPoleDB"].ToString();
 Cn.Open();

 //Create a Command object
 SqlCommand cmd = new SqlCommand();
 cmd.CommandText = "SaveItemImage";
 cmd.Connection = cn;
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("@ItemNumber", txtItemNumber.Text);
 cmd.Parameters.AddWithValue("@ItemDescription",
 txtItemDescription.Text);

174

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 //Begin a transaction
 SqlTransaction transaction = cn.BeginTransaction("ItemTran");
 cmd.Transaction = transaction;

 byte[] txContext = null;
 string filePath = string.Empty;
 try
 {

 //Execute the command
 SqlDataReader reader = cmd.ExecuteReader();
 if (reader.Read())
 {
 txContext = (reader["txContext"] as byte[]);
 filePath = reader["filePath"].ToString();
 }
 Reader.Close();

 //Open the FILESTREAM data file for writing
 SqlFileStream fs = new SqlFileStream(filePath, txContext,
 FileAccess.Write);

 //Get a stream object pointing to the content to be uploaded
 Stream localFile = fpItemImage.FileContent;

 //Start transferring data into FILESTREAM data file
 // If you are using .NET 4.0 the next 11 lines of code can be
 // replaced with a single call to "localFile.CopyTo(fs, 4096);"
 BinaryWriter bw = new BinaryWriter(fs);
 const int bufferSize = 4096;
 byte[] buffer = new byte[bufferSize];
 int byteCount = localFile.Read(buffer, 0, bufferSize);
 while (byteCount == bufferSize)
 {
 bw.Write(buffer, 0, bytes);
 bw.Flush();
 byteCount = localFile.Read(buffer, 0, bufferSize);
 }
 Bw.Close();

 //Close the files
 localFile.Close();
 fs.Close();
 }

175

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 catch (Exception ex)
 {
 //Do something with the exception
 }
 finally
 {
 //Commit the transaction and close the connection
 Cmd.Transaction.Commit();
 cn.Close();
 }
}

Listing 5-8:	 Saving item information to a FILESTREAM database.

Running the application

We have successfully completed the coding for this lab, so it is time for us to run the
application and see it in action: press F5 or click the Start Debugging button on the
toolbar. This will open the web page in a new web browser instance, as shown in
Figure 5-3.

Figure 5-3:	 The web page.

Enter an item number and description, select an image file using the Browse button, and
then click Save to insert the information into the database.

176

Chapter 5: FILESTREAM with ASP.NET and Silverlight

The code we wrote in the Click event of the Save button will insert a row into the
Items table along with the FILESTREAM data. Verify that the information is correctly
saved in the database by running SELECT * FROM Items in SSMS. If everything is set up
correctly, you will see that the data you entered in the web page shows up in the SSMS
result window.

Lab 5: Deploying and Configuring a FILESTREAM
Web Application on IIS

In Lab 4, we created, ran, and tested a web application, all within Visual Studio. By
default, when you run a web application from Visual Studio it runs on a built-in web
server, which is designed for debugging and testing web applications in a development
environment.

In a production environment, we usually configure our web application on more robust
web servers, such as Microsoft IIS. Configuring and running a web application that deals
with FILESTREAM data on IIS needs some careful attention.

In this lab, we will see how to deploy the web application we created in Lab 4 on IIS 7.0.
There are different ways of deploying a web application on a web server; we will use the
inbuilt functionality provided by Visual Studio to keep the process simple.

To do this, we will:

•	 run Visual Studio under an administrator account

•	 publish the web application to a new virtual directory on local IIS

•	 configure security for FILESTREAM access

•	 run and test the application.

177

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Running Visual Studio under an administrator
account

To deploy a web application from Visual Studio, you need to run Visual Studio under
an administrator account. With administrative privileges on the computer, we can do
this by right-clicking on the Visual Studio option in the Start menu and selecting
Run as administrator.

Publishing the web application into a new virtual
directory

In this step, we will publish the web application to a new virtual directory on local IIS.
Right-click on the project name in Solution Explorer, and select Publish. This will open
the Publish Web dialog box (Figure 5-4).

Figure 5-4:	 The Publish Web dialog box.

178

Chapter 5: FILESTREAM with ASP.NET and Silverlight

The Publish Web dialog box provides a number of different publication options. We are
going to deploy it into a local IIS virtual directory, so we will select File System from the
drop-down list. Click on the […] button and it will open a dialog box that enables us to
select a virtual directory under the local IIS server.

Next, we create a new virtual directory for our application. Click the Local IIS button and
then click the New Virtual Directory button on the top right of the page to create a new
virtual directory (Figure 5-5).

Figure 5-5:	 Selecting a virtual directory under the local IIS server.

We'll call the new virtual directory fsweb. Choose the file system location for the
published files and click OK to return to the parent window (Figure 5-6).

Figure 5-6:	 Creating the new virtual directory.

179

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Select the new virtual directory that we just created (fsweb) (Figure 5-7).

Figure 5-7:	 Selecting the target location.

Click OK to proceed to the next step. The Publish Web dialog box is displayed again,
showing our selections (Figure 5-8).

Figure 5-8:	 Starting the publication.

180

Chapter 5: FILESTREAM with ASP.NET and Silverlight

We have selected the Publish Method and Target Location, so now click the Publish
button to start the publication process. The project is published into the fsweb virtual
directory under the local IIS web server. The Visual Studio status bar will show the
progress of the operation.

When the operation completes, we can go ahead and run the application from the
browser. Open a web browser and enter: http://localhost/fsweb/default.aspx (or the
appropriate URL if your local configuration is different). This will open the web page we
created in the previous lab (Figure 5-9).

Figure 5-9:	 The resulting web page.

Now fill the data entry page with information for a new item, and click Save to send the
information to the database. Surprisingly, in most cases you will see the error shown in
Figure 5-10 (or similar) when you click Save.

181

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-10:	 Error displayed when you click Save.

The Open() method of the connection object raises an error. This is because we have
configured the connection to use Integrated Security (Windows authentication), but
the user account under which the web application runs does not have permissions
to access the database. However, Windows authentication is necessary for accessing
the FILESTREAM data through the Managed or Win32 APIs, which means we need to
persevere with Integrated Security. So, we now need to fix this error by reconfiguring the
security settings.

Configuring IIS to use SQL Server Integrated
Security

There are a number of ways to fix the login error we saw in the previous section, and the
most suitable method depends upon the security level required, the type of application,
the way users access the application, and so on. We'll use one of the simpler options here.

182

Chapter 5: FILESTREAM with ASP.NET and Silverlight

To begin, open IIS Manager by typing inetmgr in the Run window, or by selecting it
from the Administrative Tools section of the control panel. Then, in the IIS Manager
window, right-click on the Application Pools node and select Add Application Pool to
open the Add Application Pool dialog box.

Now, we can create a new application pool for our FILESTREAM web application. We'll
call the application pool fsweb and select .NET version 2.0, since we created a .NET 2.0
application (Figure 5-11).

Figure 5-11:	 The Add Application Pool dialog box.

Click OK, and IIS Manager creates a new application pool, which will show up in the list
of application pools (Figure 5-12).

183

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-12:	 The new application pool.

In the list of application pools, right-click fsweb and select Advanced Properties, or
select fsweb and click the Advanced Properties link on the right-hand side of the IIS
Manager window. In the Advanced Settings dialog box, select the Identity property and
click on the button on the right to change the value of the property (Figure 5-13).

Figure 5-13:	 Advanced Settings dialog box.

184

Chapter 5: FILESTREAM with ASP.NET and Silverlight

In the Application Pool Identity window, select Built-in account, and then select
NetworkService from the drop-down list (Figure 5-14).

Figure 5-14:	 Changing the Identity setting.

Click OK to save the settings, and close the Advanced Settings dialog box.

We have created a new application pool with the identity of NetworkService. Now
we'll associate this newly created application pool with our web application. In the IIS
Manager, select the virtual directory we created earlier (fsweb), and select the Basic
Settings option from the Actions section on the right-hand side. Then, on the Edit
Application dialog box, click Select to change the application pool associated with our
web application (Figure 5-15).

185

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-15:	 Changing the application pool.

In the Select Application Pool dialog box, select the new fsweb application pool
(Figure 5-16).

Figure 5-16:	 Selecting the fsweb application pool.

186

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Click OK to return to the parent window, and click OK again to save the changes and
return to the IIS Manager. After completing this step, our application is now configured
to run under the identity of NetworkService.

The next step is to make sure that the Network Service account has permissions to access
our database. If it does not have access to the SQL Server instance, we need to create a
new login with the required permissions. We can do this using SSMS, by right-clicking on
Logins in the SQL Server instance tree and selecting New Login (Figure 5-19).

Figure 5-17:	 Creating a new login for the Network Service account.

The New Login dialog box is displayed. In Login name, select the fully qualified name
of the Network Service account. The easiest way could be to use the Search button and
select the account from the search results (Figure 5-18). This assumes that the SQL Server
is running on the same machine as the IIS app pool. If not, the web server's machine
account needs to be given permissions.

187

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-18:	 Specifying the name of the Network Service account.

Now go to the User Mapping page. We will give the new account permissions to access
the NorthPole database. For the purpose of this lab, I am assigning the db_owner role
to the newly created login (Figure 5-19). However, in most real-world scenarios you would
probably assign a lesser set of permissions; it is very important to make sure you give only
those permissions that are absolutely necessary. In a typical production environment, the
database administrator will do this based on the security policy of the organization.

Figure 5-19:	 Assigning permissions to the Network Service login.

With this, we are done with security configuration and it is time to test the website and
verify that it works.

188

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Running the application

Run the application again on your favorite web browser. Enter the item information,
including the location of an image file to load into the FILESTREAM column, and click
Save to push the information to the database (Figure 5-20).

Figure 5-20:	 Running the application.

This time, the information should be successfully added into the database. You can verify
this by looking in the Items table; in SSMS, run a SELECT * from Items query on the
Items table to see whether the newly entered data shows up in the table.

Congratulations! You have successfully completed the second ASP.NET lab. It is time to
move on to the next lab and explore some more interesting stuff.

189

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Lab 6: Creating a Web Handler to Serve Images
from a FILESTREAM Database

In Lab 4, we saw how to upload files into the FILESTREAM column of a SQL Server
database from a web page. In this lab, we will see how to serve those files back to the
client applications, upon request.

We will create a web page to retrieve images from the database and send them to the
client browser. A web page is not the best way to implement such a handler, but at this
stage we want to minimize complexity, so that we can focus on FILESTREAM and not
on ASP.NET features. In a later lab, we will develop a similar solution using a generic
handler, which is a much better approach.

To do this, we will:

•	 create a stored procedure to retrieve the FILESTREAM information

•	 create the web page that serves item images

•	 run and test the application.

Creating a stored procedure to retrieve
FILESTREAM data

Start by creating a stored procedure that will retrieve the logical path name of the
FILESTREAM value, and the FILESTREAM transaction context. This stored procedure,
shown in Listing 5-9, will take an item number as input parameter and will return the
FILESTREAM information.

190

Chapter 5: FILESTREAM with ASP.NET and Silverlight

CREATE PROCEDURE GetItemImageInfo
 (
 @ItemNumber VARCHAR(20)
)
AS
 BEGIN
 SELECT ItemImage.PathName() AS filePath ,
 GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext
 FROM Items
 WHERE ItemNumber = @ItemNumber
 END

Listing 5-9:	 Creating the stored procedure.

Creating the web page to serve images

The next step is to create a web page that can serve images to the client browsers. Add a
new ASP.NET web form to the project and name it GetItemImage.aspx.

The design part of this page does not need any changes because this page is not used as
a UI element; its purpose is only to serve the image of the specified item to the client
browser. In most cases, we'd use a generic handler (.ashx file) for this type of scenario,
which will be slightly faster than using an ASPX page. However, we will use an ASPX page
for simplicity.

Let's start writing the code for this page. We'll begin by adding the necessary import
statements to the code file GetItemImage.aspx.cs.

using System.IO;
using System.Data.SqlClient;
using System.Data;
using System.Data.SqlTypes;

Listing 5-10:	 The import statements.

191

Chapter 5: FILESTREAM with ASP.NET and Silverlight

The web page expects a parameter in the query string named ItemNumber (Listing 5-11).

protected void Page_Load(object sender, EventArgs e)
{
 string ItemNumber;
 ItemNumber = Request.QueryString["ItemNumber"].ToString();

 //Create and open a database connection
 SqlConnection cn = new SqlConnection();
 cn.ConnectionString =
 System.Configuration.ConfigurationManager.ConnectionStrings[
 "NorthPoleDB"].ToString();
 cn.Open();

 //Create a Command object
 SqlCommand cmd = new SqlCommand();
 cmd.CommandText = "GetItemImageInfo";
 cmd.Connection = cn;
 cmd.CommandType = System.Data.CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("@ItemNumber", ItemNumber);

 //Begin a transaction
 SqlTransaction trn = cn.BeginTransaction("ItemTran");
 cmd.Transaction = trn;

 string filePath = null;
 byte[] txContext = null;

 try
 {
 //Execute the command
 SqlDataReader reader = cmd.ExecuteReader();
 if (reader.Read())
 {
 txContext = (reader["txContext"] as byte[]);
 filePath = reader["filePath"].ToString();
 }
 reader.Close();

 // Open the FILESTREAM data file for reading
 SqlFileStream fs = new SqlFileStream(filePath, txContext,
 FileAccess.Read);

192

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 // Start transferring data from the FILESTREAM data file
 Response.BufferOutput = false;
 Response.ContentType = "image/jpeg";
 BinaryWriter bw = new BinaryWriter(Response.OutputStream);

 const int bufferSize = 4096;
 byte[] buffer = new byte[bufferSize];
 int byteCount = fs.Read(buffer, 0, bufferSize);

 while (byteCount == bufferSize)
 {
 bw.Write(buffer, 0, byteCount);
 byteCount = fs.Read(buffer, 0, bufferSize);
 }

 //Close the files
 Response.End();
 bw.Close();
 fs.Close();
 }
 catch (Exception ex)
 {
 //do some error handling
 }
 finally
 {
 // Commit the transaction and close the connection
 cmd.Transaction.Commit();
 cn.Close();
 }
}

Listing 5-11:	 Code to serve images stored in a FILESTREAM column.

What is interesting and worth noticing here is how we are sending the data back to the
web server. We do this through the ASP.NET Response object. We first set the content
type to image/jpeg to tell the browser that we are sending back an image. Then we
access the OutputStream property of the Response object and write the content of the
FILESTREAM file into it (Listing 5-12).

193

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Response.BufferOutput = false;
Response.ContentType = "image/jpeg";
BinaryWriter bw = new BinaryWriter(Response.OutputStream);

Listing 5-12:	 Accessing the OutputStream property of the Response object.

Refer to Chapter 12, in the section entitled Best Practices for FILESTREAM Development,
to learn about the potentially useful addition of a timestamp column to allow for caching
FILESTREAM data that is sent over the web.

Running and testing the application

We have finished the code, so we can now verify that the application is working as
expected. In Visual Studio, set the web page that we created in this lab as the default page,
and run the application.

When the web page is open in the browser, add a parameter to the query string. Enter the
item number of a record that exists in the table. This will retrieve the image associated
with the specified item, and the image will be displayed on your browser (Figure 5-21).

Figure 5-21:	 Running the application.

In the next lab we will see how to use this page as the URL source for item thumbnail
images we display on a web page.

194

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Lab 7: Displaying Thumbnail Images of Items
from a FILESTREAM Database on an ASP.NET
Web Page

In this lab, we will create a web page that will display a list of items along with their
thumbnail images. We will use the web handler we created in the previous lab to fetch
images stored in the FILESTREAM column of a SQL Server database.

To do this, we will:

•	 create a stored procedure to fetch item details

•	 add a new web form and a Grid View

•	 create a data source that retrieves item information, and bind it to the Grid View

•	 configure the Grid View

•	 run and test the web page.

Creating the stored procedure to fetch item
information

The first step is to create a stored procedure that returns the list of all the items in the
Items table. However, before you begin, add a few records to the Items table (I'll leave
this as an exercise for the reader – I have populated my sample table with four rows, with
four different products and their thumbnail images).

195

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Now, in the SSMS window run the code in Listing 5-13 to create the stored procedure.

CREATE PROCEDURE GetItemList
AS
 BEGIN
 SELECT ItemNumber ,
 ItemDescription ,
 '/GetItemImage.aspx?ItemNumber=' + ItemNumber AS ImageURL
 FROM Items
 END

Listing 5-13:	 Creating a stored procedure to retrieve item information.

Notice the third column returned by the stored procedure; the value returned by this
column points to the page we created in the previous lab to return images from the
database. The value returned by this column will be used to bind the image control on the
grid that will display the thumbnails. Run the application we created in the previous lab
and load a few more images into the FILESTREAM table.

Listing 5-14 shows an example results set from the stored procedure, based on the data I
entered for this demonstration.

ItemNumber ItemDescription ImageURL

---------- --------------- ----------------------------------

1001 Microsoft Mouse /GetItemImage.aspx?ItemNumber=1001

3001 Dell Laptop /GetItemImage.aspx?ItemNumber=3001

4005 Apple iPad /GetItemImage.aspx?ItemNumber=4005

6009 Amazon Kindle /GetItemImage.aspx?ItemNumber=6009

Listing 5-14:	 Example results from the stored procedure.

196

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Adding a new web form and data grid
Next, add a new web form named ItemList.aspx to the project, then drag a GridView
control from the toolbox and drop it on the web form (Figure 5-22).

Figure 5-22:	 A GridView control.

Adding a data source
In this step, we will create a data source that fetches the item details, and binds it to
the GridView control. Go to the properties of the GridView control, and locate the
DataSourceID property. From the drop-down list, select New data source (Figure 5-23).

Figure 5-23:	 Creating a new data source.

197

Chapter 5: FILESTREAM with ASP.NET and Silverlight

This will open the Data Source Configuration Wizard, which will take you through the
configuration process. From the list of data source types available, select Database. We'll
name the data source itemds (Figure 5-24).

Figure 5-24:	 Specifying an ID for the data source.

In the next dialog box, click New Connection to create and configure a new connection
to the database. The Add Connection dialog box is displayed (Figure 5-25).

Note that I have used Windows authentication for consistency only; Windows authen-
tication is not necessary for this connection because it is used to execute the stored
procedure that fetches item details, but not the images. We will use the handler page
we created in the previous lab to fetch the actual images, and that page is already using
Windows authentication.

198

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-25:	 The Add Connection dialog box.

Click OK on the Add Connection dialog box, and then click Next to move to the next
step in the wizard. Click Next again, to save the connection string to the application
configuration file.

199

Chapter 5: FILESTREAM with ASP.NET and Silverlight

When you see the Configure the Select Statement step, select Specify a custom SQL
statement or stored procedure, because we already created the stored procedure to
retrieve item information (Figure 5-26).

Figure 5-26:	 Configuring the Select Statement.

In Define Custom Statements or Stored Procedures, select Stored procedure, and from
the list of stored procedures select GetItemList (Figure 5-27). Then click Next.

Figure 5-27:	 Selecting the stored procedure.

200

Chapter 5: FILESTREAM with ASP.NET and Silverlight

In the next step, click the Test Query button to verify that the stored procedure returns
the expected results (Figure 5-28).

Figure 5-28:	 Previewing the data.

This is the last step of the wizard. Click Finish to return to the web page designer
window. When the wizard exits, it automatically binds the columns returned by the
stored procedure with the columns in the grid control. By default, all columns are bound
to text boxes (Figure 5-29).

Figure 5-29:	 Selecting the Edit Columns option.

201

Chapter 5: FILESTREAM with ASP.NET and Silverlight

This default is alright for the first two columns, but on the last column we need an image
control. We need to edit the grid control and change the third column from text box to
image control. Click the Edit Columns link to open the column editor window. In the
Fields dialog box, remove the ImageURL column that the wizard automatically added
(Figure 5-30).

Figure 5-30:	 Removing the ImageURL text column.

Now, add an ImageField from the Available fields list, and then set the
DataImageUrlField property of the image field to the ImageURL column
of the data source (Figure 5-31).

202

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-31:	 Adding an ImageField.

You might also want to change the heading of the columns, and set the height and width
of the image control so that it looks good on the web page, and modify the layout and
format of the text to make it look even better. Figure 5-32 shows how my grid control
looks in the designer after applying some formatting changes.

Figure 5-32:	 The grid control.

203

Chapter 5: FILESTREAM with ASP.NET and Silverlight

That is all we need to do in this lab. Our web page is ready. Let's build the project, set the
default page to the newly created web form, and run the application (Figure 5-33).

 Figure 5-33:	 Running the application.

You will see the web page load the details of the items in the database and display the
thumbnail images associated with those items.

204

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Lab 8: Using SqlFileStream in an N-Tier Scenario

For many reasons, today's web applications are often architected to run across multiple
physical computers, referred to as tiers. Using FILESTREAM in a multi-tier design
requires attention to an important detail: in order to achieve the most benefit from
FILESTREAM, it should be accessed using the Win32 streaming APIs. However, using
SqlFileStream also requires an active transaction in the SQL Server database. The
consumer of the FILESTREAM data is most often the tier closest to the client – and
furthest away from the database. If the SqlFileStream API is used, this requires that
this tier has at least some knowledge of the data store. In general, this violates good
architectural practices.

In this lab, we will create a solution that makes the presentation tier as independent on
this database transaction as possible, while maintaining the performance benefits offered
by streaming access to FILESTREAM data. To fully understand the problem involved, let's
consider the following example scenario. A web application must handle requests from
clients for which the response includes data stored in a SQL Server FILESTREAM column.
The web application will be hosted on a front-end IIS web server, while the SQL Server
database is hosted on a back-end server. The web application's developers aim to make
the application as efficient as possible, and want to use the SqlFileStream class
and copy the stream's contents to the Response object's OutputStream (as shown in
Listing 5-11 as part of Lab 6). They have four options, as shown below.

•	 Start the SqlTransaction required for the SqlFileStream to use in the
presentation tier.
This solution requires that the web application has intimate knowledge of the
database's configuration and details. Generally, one of the architectural goals of a
multi-layered web application is to avoid this.

•	 Start a SqlTransaction and create the SqlFileStream in the data access layer
and pass the SqlFileStream back to the client application.
This solution does not address the concern that the SqlTransaction must be active
while the presentation layer uses the SqlFileStream object. The client, however, has

205

Chapter 5: FILESTREAM with ASP.NET and Silverlight

no control over the SqlTransaction, and cannot guarantee, either that the trans-
action will still be active, or that the transaction will be properly disposed when the
work is done.

•	 Create a custom class that will act as a domain object that encapsulates the required
database objects and the SqlFileStream.
An object of this custom class will be instantiated in the data access layer and passed
on to the presentation layer. This object will implement IDisposable to ensure that
the SqlTransaction and the SqlConnection objects encapsulated will be properly
disposed when the client is finished with the work. This may ensure somewhat better
performance than the fourth solution which, as we will see in a moment, requires an
additional stream copy. However, it does not fully abstract the data access method.

•	 Perform all data access, including the streaming access to FILESTREAM data, in the
data access layer and copy the stream data to a MemoryStream. Then return the
MemoryStream to the caller.
This is the most appropriate solution and will be demonstrated in this lab. We
create the SqlFileStream object in the data access layer and copy the contents
to a MemoryStream. We then pass the MemoryStream reference through the
tiers. This involves an extra step (the stream copy from SqlFileStream to
MemoryStream), which, in my view, provides more than sufficient benefits
because the client is completely unaware of the source of the streamed data.

Creating the Visual Studio solution and projects

For this lab, we will use the same sample database created previously. We will create a
new Visual Studio solution and create three projects: one for domain classes, one for a
data access layer, each implemented as a class library, and a third for a presentation layer,
implemented as a web application.

206

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Open Visual Studio and create a blank solution by selecting File | New | Project… from
the menu. In the New Project dialog box, under Other Project Types, select Visual
Studio Solutions and then Blank Solution. Click OK to create the new, blank solution.

In Solution Explorer, right-click the solution and select Add | New Project…. Select the
ASP.NET Empty Web Application project template. In this lab, we will give this project
the name Presentation. Click OK to create this new project as part of the solution.

Follow the same process for adding a second new project to the solution, this time
using the Class Library template. Name this project DataAccess. Delete the default
Class1.cs file from the project. Repeat this process one more time to create another
class library with the name Domain.

We will now add references to the appropriate projects. The web application will call into
the data access layer to retrieve information from the SQL Server database. Both the web
application and the data access layer will use the domain objects. We must therefore add
the following references in the Presentation project:

•	 Domain

•	 DataAccess.

And in the DataAccess project:

•	 Domain

•	 System.Configuration.

In order to start the web application showing an image using the handler we will develop,
we must change the start page. Right-click on the web application and select Properties.
In the Web tab, change the Start Action to Specific Page and enter GetItemImage.
ashx?itemID=1 as the value. We are now ready to start coding the solution.

207

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Writing the domain object code

In a real-world project, you would create a domain object class for every entity your appli-
cation will use. Because our database stores little in the way of entities and our sample
web application will not actually use it, we will skip this step altogether. We did create the
Domain project, but only to illustrate the typical architectural setup of such a solution.

Writing the data access code

In the DataAccess project, create a single class with the name ItemData. Change the
access modifier of the class to public. At the top of the code file, import the namespaces
System.Configuration, System.Data.SqlClient, System.Data.SqlTypes and
System.IO. The class will have one method, which retrieves the FILESTREAM data for a
specified ItemID (Listing 5-15).

public class ItemData
{
 public MemoryStream GetItemImage(string itemID)
 {
 MemoryStream ms = null;

 string ConnectionString = ConfigurationManager.ConnectionStrings[
 "NorthPoleDB"].ToString();

 string CmdText = @"SELECT ItemImage.PathName(),
 GET_FILESTREAM_TRANSACTION_CONTEXT()
 FROM Items WHERE ItemID = @itemID";

 using (SqlConnection conn = new SqlConnection(ConnectionString))
 using (SqlCommand cmd = new SqlCommand(CmdText, conn))
 {
 conn.Open();

 using (SqlTransaction tran = conn.BeginTransaction())

208

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 {
 cmd.Transaction = tran;
 cmd.Parameters.Add(new SqlParameter("itemID",
 System.Data.SqlDbType.VarChar, 20));
 cmd.Parameters["itemID"].Value = itemID;

 using (SqlDataReader dr = cmd.ExecuteReader())
 {
 if (dr.HasRows && dr.Read())
 {
 using (SqlFileStream sfs = new SqlFileStream(dr.GetString(0),
 (byte[])dr.GetValue(1), FileAccess.Read))
 {
 // This construct is used to avoid problems with a
 // FILESTREAM data file that exceeds 4 GB in size
 ms = new MemoryStream(
 (int)System.Math.Min(sfs.Length, int.MaxValue));

 // Copy the SqlFileStream contents to the
 // MemoryStream (requires .NET 4.0 and later)
 sfs.CopyTo(ms);
 }
 }
 }
 }
 }

 return ms;
 }
}

Listing 5-15:	 Code for the ItemData class.

In this method, new SqlConnection and SqlTransaction objects are created.
Those are then used to retrieve the information necessary to create an instance of the
SqlFileStream class. Recall that in Chapter 4, as part of the second Entity Framework
lab, we created a stored procedure that encapsulates this. That stored procedure could be
reused here instead of the embedded SQL statement. Then the contents of the
SqlFileStream are copied to a new instance of System.IO.MemoryStream,
which is then used as the return value of the method.

209

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Alternative to the Stream.CopyTo() method

The copy of the stream content in this lab is done using the Stream.CopyTo() method, which was

introduced with the .NET Framework Version 4. If your application targets an older Framework version,

refer to the other code samples in this chapter for a way of copying the contents of one stream to another

using a 4 KB buffer (which is what Stream.CopyTo() also does).

Creating an HTTP handler to serve images

The concept of showing the web page in a web browser will be very similar to the
one used in Lab 6, but the code will look different. There will be no reference to any
SQL types at all; any data access is completely abstracted in the data access layer (the
DataAccess project).

To drive this point home, in the Presentation web application, remove the reference to
the System.Data assembly. Then we will also modify the web.config file to include
the database connection string. Refer to Listing 5-3 for this code. In the final version of
the application, this connection string can be removed. Because we are taking a step-
by-step approach to this implementation, we will initially test the code whereby the
web application calls into the data access component directly, and the web application's
configuration file will provide the required connection string information.

210

Chapter 5: FILESTREAM with ASP.NET and Silverlight

To illustrate a slightly more advanced ASP.NET concept, for this lab we will
implement a generic handler, rather than repurposing a web form as a handler.
Right-click on the Presentation project, and select Add | New Item and in the
Add New Item dialog box, select the Generic Handler template and give the new
item the name GetItemImage.ashx. At the top of the file, add namespace import
statements for the DataAcess and System.IO namespaces.

We will write our code in ProcessRequest(), which is the method called by the
ASP.NET runtime if the handler is invoked. The code is shown in Listing 5-16.

public void ProcessRequest(HttpContext context)
{
 context.Response.ContentType = System.Net.Mime.MediaTypeNames.Image.Jpeg;
 context.Response.BufferOutput = false;

 ItemData data = new ItemData();

 MemoryStream ms = data.GetItemImage(context.Request.QueryString["itemID"]);

 if (ms != null && ms.Length > 0)
 {
 context.Response.AddHeader("content-length", ms.Length.ToString());
 // Reset the current position in the MemoryStream
 ms.Position = 0;
 // .NET 4.0 and later method only
 ms.CopyTo(context.Response.OutputStream);
 }
}

Listing 5-16:	 ProcessRequest() method code.

This code contains no references to SQL, connection strings, or other database access.

211

Chapter 5: FILESTREAM with ASP.NET and Silverlight

This code will run as is, but we have not yet enabled remote access to the DataAccess
component. However, at this time, you may want to run and test the web application to
ensure that it returns the image as expected, even though we do not yet have a way to
split the data access layer from the web application.

Adding remote calling capability

If we want to truly separate the web application from the data access layer, we must
have a way to call the methods in the data access class ItemData remotely. Windows
Communication Foundation (WCF) is one .NET technology that allows inter-process
and inter-machine communication. WCF was introduced with .NET Framework
Version 3 and has seen upgrades in more recent releases. An older technology for
calling remote code is called .NET Remoting. Even though the .NET Framework still
fully supports remoting, WCF is generally recommended. WCF services are easier to
implement because less "plumbing" code is required. A thorough discussion of the
concepts of WCF is beyond the scope of this book. However, the lab should be easy to
follow with a basic understanding of the "ABCs" of WCF: Address + Binding + Contract =
Service, as provided by this MSDN article: http://brurl.com/fs6.

To add remote calling capability to our application, we will first create a component
that will contain the definition of our WCF service contract. Then, we create a console
application to host the data access component as a WCF service. Finally, we will modify
the web application to call the data access component running in the console host.

Creating and implementing the service interface

In Solution Explorer, right-click the solution node and select Add, New Project…. In
the Add New Project dialog box, select Class Library and name it ServiceInterfaces.
Add a reference to the System.ServiceModel assembly and DataAccess project to the
new project. Remove the default Class1.cs file and add a new interface (right-click

http://brurl.com/fs6

212

Chapter 5: FILESTREAM with ASP.NET and Silverlight

the project, select Add | New Item… | Interface) with the name IItemData. At the top
of the code file, import the System.IO and System.ServiceModel namespaces. The
definition of the IItemData interface is shown in Listing 5-17.

[ServiceContract()]
Public interface IItemData
{
 [OperationContract()]
 MemoryStream GetItemImage(string itemID);
}

Listing 5-17:	 IItemData interface definition.

We now need to modify the DataAccess.ItemData class to implement this new
interface. First, add a reference to the new ServiceInterfaces project in the DataAccess
project. Then, modify the definition of the ItemData class as shown in Listing 5-18. No
change is required, other than to write the interface name, because the ItemData class
already implicitly has a GetItemImage() method with the correct signature.

Public class ItemData : ServiceInterfaces.IItemData
{
 /* Other code ommitted for brevity */
}

Listing 5-18:	 ItemData class implements IItemData interface.

Creating the WCF service host

For this basic lab, we will self-host a WCF service in a console application. In a real-world
scenario, you might consider creating a Windows Service or hosting the WCF service
under IIS.

213

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Create another new project using the Console Application template. Name this project
ConsoleHost. Add a reference to the ServiceInterfaces and DataAccess project and also
to the System.ServiceModel assembly.

At the top of the Program.cs code file, import the namespaces
System.ServiceModel, System.ServiceModel.Description,
DataAccess and ServiceInterfaces. Create the following code in
the Main() method (Listing 5-19).

Uri a = new Uri("net.tcp://localhost:4133/itemData");

using (ServiceHost svchost = new ServiceHost(typeof(ItemData), a))
{
 ServiceEndpoint sep = svchost.AddServiceEndpoint(typeof(IItemData),
 new NetTcpBinding(), "");

 svchost.Open();

 Console.WriteLine("The following EndpointListeners are active:\n");

 foreach (ServiceEndpoint l in svchost.Description.Endpoints)
 Console.WriteLine(l.Address);

 Console.Write("\nListening for requests. Press any key to stop...");
 Console.ReadKey();

 svchost.Close();
}

Listing 5-19:	 Creating a WCF service hosted in a console application.

Depending on your system configuration, you may need to select a TCP port different
than 4133 if that port is already in use on your system (Port 4133 was arbitrarily selected
for this example). We are using the TCP transport here, because we need to transport
a MemoryStream object, which is not serializable. We are implementing the ABCs of
WCF in these lines of code: after creating a ServiceHost instance (S) at our base URI
(A), we are creating the TCP-based endpoint (B) that uses the IItemData interface as the
contract (C). We can then open the communication channel and wait for clients to call.

214

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Because our data access component is now effectively hosted in this console application,
we need to provide the database connection string in the application's App.config file.
Add a new application configuration file named App.config and add the connection
string information like in Listing 5-3.

Modifying the web application to call the WCF service

We are now ready to modify the web application. If we did not have control over the
service, we might choose to create a Service Reference with a proxy class. This requires
a few extra configuration steps on the service side. Because we do have control over the
service, we will share the IItemData interface between the service and the client by
adding a reference to the ServiceInterfaces project in the web application. We must also
add a reference to the System.ServiceModel assembly, but we can remove the reference
to the DataAccess project.

In the GetItemImage.ashx handler, we need to modify the code so that we no longer
create an instance of the ItemData class directly, but rather call a remote instance
using WCF. Listing 5-20 shows the new code for the ProcessRequest() method. The
changed lines of code are in bold format and underlined. Also add a namespace import for
System.ServiceModel at the top of the code file.

public void ProcessRequest(HttpContext context)
{
 context.Response.ContentType = System.Net.Mime.MediaTypeNames.Image.Jpeg;
 context.Response.BufferOutput = false;

 EndpointAddress a = new EndpointAddress("net.tcp://localhost:4133/itemData");

 ServiceInterfaces.IItemData data =
 ChannelFactory<ServiceInterfaces.IItemData>.CreateChannel(
 new NetTcpBinding(), a);

 MemoryStream ms = data.GetItemImage(context.Request.QueryString["itemID"]);

215

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 if (ms != null && ms.Length > 0)
 {
 context.Response.AddHeader("content-length",
 ms.Length.ToString());
 // Reset the current position in the MemoryStream
 ms.Position = 0;
 // .NET 4.0 and later method only
 ms.CopyTo(context.Response.OutputStream);
 }
}

Listing 5-20:	 Updated ProcessRequest() method using a WCF call to obtain the FILESTREAM data.

Because the interface definition of IItemData matches that of the ItemData class we
used to call, there is no difference in the code beyond the creation of the channel. In
essence, we have replaced the call to the constructor of the ItemData class with a WCF
call over TCP.

Be sure to make the URI of the EndpointAddress in this code match up with the
URI created in the console application. If you will be running this code actually across
different machines, replace localhost with the name or IP address of the computer
running the WCF service. To avoid hard-coding the name or IP address of the server,
the WCF client configuration can also be created in the web.config file, but that is not
demonstrated here.

Testing the application from Visual Studio

To test this code from Visual Studio, first right-click the ConsoleHost project and
select Debug, Start new instance. This will start the console application and, with it,
the WCF service. Next, right-click the web application and start a new instance of it, also
in debug mode.

216

Chapter 5: FILESTREAM with ASP.NET and Silverlight

If everything is set up correctly, the web application will make a remote call to the WCF
service to obtain the MemoryStream containing the image. Other than a possible slight
delay, the application is functionally the same as Lab 6. Architecturally, however, the
application looks very different because the web application displaying the image no
longer relies on knowledge of the data store.

If you have access to two computers (perhaps using virtualization), deploy the WCF
console host application to the computer running your NorthPole database instance
and deploy the web application to the other computer. Be sure to open up the port
number specified in the host's configuration file in the computer's firewall software.

Lab 9: Playing a Video Stored in a FILESTREAM
Database on a Silverlight Application

In this lab we will create a Silverlight application that will play a video stored in a
FILESTREAM database.

To do this, we will:

•	 create a new table in the NorthPole database and load a video

•	 create a Silverlight application

•	 create the video handler

•	 add a MediaElement and configure it

•	 run and test the application.

217

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Setting up the data

First, we'll set up the table and data required for this lab. Create a table in the NorthPole
database to store the video files using the T-SQL code shown in Listing 5-21.

CREATE TABLE Videos(
 VideoID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,
 VideoName VARCHAR(100),
 VideoData VARBINARY(MAX) FILESTREAM
)

Listing 5-21:	 Creating a table to hold the video data.

Now, we'll add some videos to the table. For this demo, I will use the sample video file
that comes with the Windows 7 operating system. Listing 5-22 loads a video file into
the table we just created. Make sure that you change the location of the file to point
to a .wmv file that exists on the local computer.

-- Insert the data into the table
INSERT INTO Videos (VideoID, VideoName, VideoData)
SELECT NEWID(), 'Windows7 Sample Video', CAST(bulkcolumn
 AS VARBINARY(MAX))
FROM OPENROWSET(
 BULK
 'C:\Users\Public\Videos\Sample Videos\Wildlife.wmv',
 SINGLE_BLOB) AS x

Listing 5-22:	 Loading a video into the table.

Next, create a stored procedure that returns the logical path name of the FILESTREAM
column, along with the FILESTREAM transaction context (Listing 5-23).

218

Chapter 5: FILESTREAM with ASP.NET and Silverlight

CREATE PROCEDURE GetVideoInfo(
 @videoid UNIQUEIDENTIFIER
)
AS
BEGIN
 SELECT
 VideoData.PathName() AS filePath,
 GET_FILESTREAM_TRANSACTION_CONTEXT() AS txContext
 FROM Videos
 WHERE VideoID = @videoid
END

Listing 5-23:	 Creating a stored procedure to return the logical path and

FILESTREAM transaction context.

This procedure accepts a VideoID and returns the FILESTREAM information from the
associated record.

Creating a Silverlight application

The next step is to create a Silverlight application. In Visual Studio, open the new project
page by selecting File | New | Project (Figure 5-34).

Figure 5-34:	 Creating a Silverlight application.

219

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Select Silverlight Application from the project templates and click OK to create a new
Silverlight application project. Visual Studio prompts us to select the project type and
Silverlight version (Figure 5-35).

 Figure 5-35:	 Selecting the Web project type and Silverlight Version.

Creating a video handler

The next step is to create a handler that can read the FILESTREAM data from the
database and server the client requests. As before, we'll use an ASPX page for simplicity,
even though in the real world you would probably create an ASP.NET handler as a code
item and register it in web.config.

To create the video handler, right-click on the project in the Solution Explorer and select
Add New Item. Select ASP.NET Web Form and name it getvideo.aspx. The code that

220

Chapter 5: FILESTREAM with ASP.NET and Silverlight

you need to add into the web form is very much the same as we have seen in the previous
lab, when we created a handler for the images:

•	 change the name of the query string parameters and local variable

•	 change the name of the stored procedure

•	 change the content type returned by the handler.

Listing 5-24 shows the code with the changes in bold and underlined.

protected void Page_Load(object sender, EventArgs e)
{
 string VideoID;
 VideoID = Request.QueryString["VideoID"].ToString();

 //Create and open a database connection
 SqlConnection cn = new SqlConnection();
 cn.ConnectionString =
 System.Configuration.ConfigurationManager.ConnectionStrings[
 "NorthPoleDB"].ToString();
 cn.Open();

 //Create a Command object
 SqlCommand cmd = new SqlCommand();
 cmd.CommandText = "GetVideoInfo";
 cmd.Connection = cn;
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("@videoid", VideoID);

 //Begin a transaction
 SqlTransaction trn = cn.BeginTransaction("VideoTran");
 cmd.Transaction = trn;

 string filePath = string.Empty;
 byte[] txContext = null;

 try
 {
 //Execute the command
 SqlDataReader reader = cmd.ExecuteReader();
 if (reader.Read())

221

Chapter 5: FILESTREAM with ASP.NET and Silverlight

 {
 txContext = (reader["txContext"] as byte[]);
 filePath = reader["filePath"].ToString();
 }
 reader.Close();

 //Open the FILESTREAM data file for reading
 SqlFileStream fs = new SqlFileStream(filePath, txContext,
 FileAccess.Read);

 //Start transferring data into filestream data file
 Response.BufferOutput = false;
 Response.ContentType = "video/x-ms-wmv";
 BinaryWriter bw = new BinaryWriter(Response.OutputStream);

 const int bufferSize = 4096;
 byte[] buffer = new byte[bufferSize];
 int byteCount = fs.Read(buffer, 0, bufferSize);

 while (byteCount == bufferSize)
 {
 bw.Write(buffer, 0, bytes);
 byteCount = fs.Read(buffer, 0, bufferSize);
 }

 //Close the files
 Response.End();
 bw.Close();
 fs.Close();
 }
 catch(Exception ex)
 {
 //Do some error handling
 }
 finally
 {
 // Commit the transaction and close connection
 cmd.Transaction.Commit();
 cn.Close();
 }
}

Listing 5-24:	 Code that serves video files stored in a FILESTREAM database.

222

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Make sure that you add a connection string named NorthPoleDB to the web.config
(Listing 5-25).

<add
 name="NorthPoleDB"
 connectionString="Data Source=(local);
 Initial Catalog=NorthPole; Integrated Security=SSPI"
 providerName="System.Data.SqlClient" />

Listing 5-25:	 Adding a connection string.

Adding and configuring MediaElement

Next, we will add a MediaElement to the Silverlight application. The MediaElement
component will be responsible for playing the video data that our handler will serve to
the Silverlight application. Open MainPage.xaml in the designer window and drag a
MediaElement object into it. Resize it so that it will look like in Figure 5-36.

Figure 5-36:	 Adding a MediaElement object.

223

Chapter 5: FILESTREAM with ASP.NET and Silverlight

The next step is to set the source of the MediaElement to the video handler we created
in the previous step. Open the property page of the MediaElement, set the AutoPlay
property to True and configure the Source property as demonstrated in Figure 5.37.

Figure 5-37:	 Setting the Source property of the MediaElement.

In this lab we are using a static URL as the source of the video, which can play only
one video configured at design time. We can easily change it to dynamic value by
programmatically setting the Source property at run time. Note also that the URL
will need changes after deploying the application on a web server.

Let's take a look at the structure of the URL specified in the Source property. To build
this URL, we need to know the port on which Visual Studio runs the built-in web server
(http://localhost:36005) and the GUID value stored in the VideoID column of the row
that contains the video to be played (videoid=696CEFAC-3DC1-4239-83A3-7836C5).

By default, Visual Studio runs a web application using a built-in web server when you run
a project from the IDE. The default configuration identifies a dynamic port and binds the
web server to it. We can configure the web application project to use a specific port from
the Web tab of the project properties page (Figure 5-38).

224

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-38:	 Configuring a web project to run on a specific port when

executing from Visual Studio IDE.

Running and testing the application

The final step is to run and test the Silverlight application. Build the project and run
the application. This will open the Silverlight application test page (which is part of the
project) in the default browser and load the application. The media element we added will
invoke the video handler, which will stream video data to the MediaElement. This, in
turn, will play it on the browser (Figure 5-39).

225

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Figure 5-39:	 Running the application.

Summary

ASP.NET and Silverlight are two of the most popular web application development
platforms available for .NET programmers today. The labs presented in this chapter were
created with the intention of helping the ASP.NET and Silverlight developer community
to get started with developing web applications that deal with FILESTREAM data.

In Lab 4, we created an ASP.NET web page which demonstrated how to create web
applications that allow the user to upload files into a FILESTREAM database. In Lab 5,
we saw that web applications that deal with FILESTREAM storage might break when
deployed on the web server (IIS). Applications that deal with FILESTREAM should use
Windows authentication when connecting to SQL Server. In most cases, the user account
under which the application is configured on IIS may not have access to the SQL Server
database, and causes an application failure. We saw how to fix this in Lab 5.

226

Chapter 5: FILESTREAM with ASP.NET and Silverlight

Lab 6 demonstrated how to serve images stored in a FILESTREAM database to the web
clients. For simplicity, we created an ASP.NET web form to do this. However, a more
appropriate way would be by using an ASP.NET handler, and the FILESTREAM-related
code that we wrote in the handler web form can be added to a generic handler with no
additional changes. Lab 7 used the web handler to display image files. Lab 8 then took the
next step and separated the implementation of the data store from the client. We also
used an actual ASP.NET handler in that lab.

In Lab 9, we saw how to create a Silverlight application that plays video files stored in a
FILESTREAM-enabled SQL Server database. We created another handler web page for
serving the video files stored in the database. A MediaElement component added to the
Silverlight application invoked the video handler which streamed the video data to the
client web page.

227

Chapter 6: FILESTREAM with SSIS and
SSRS

This chapter will demonstrate how to access FILESTREAM data from SQL Server
Business Intelligence (BI) projects, namely with SQL Server Integration Services (SSIS)
and SQL Server Reporting Services (SSRS). We will complete the labs below.

•	 Lab 10: Loading BLOB values into a FILESTREAM column using SSIS.

•	 Lab 11: Exporting BLOB values from a FILESTREAM column using SSIS.

•	 Lab 12: Building a product catalog in SSRS that displays images stored in
		 a FILESTREAM column.

The focus of the labs is to demonstrate how to access FILESTREAM data from SSIS
and SSRS. In SSIS, we will use a Script task rather than a Data Flow task to transfer
FILESTREAM data. That way we can use the streaming APIs and increase performance. In
SSRS, there are no special accommodations that can be made to use streaming access to
the FILESTREAM data.

These labs do not even attempt to cover the core SSIS and SSRS features. For example, in
the case of SSIS, features like configurations and parameters are not used. In the case of
SSRS, no time is spent on designing a proper layout for the report. The goal of these labs
is simply to provide you with basic examples that you can enhance further to fit into your
specific application needs.

228

Chapter 6: FILESTREAM with SSIS and SSRS

FILESTREAM and SSIS

SSIS is a popular choice for moving data in and out of SQL Server. While it is quite easy to
create SSIS packages that import and export SQL Server data, it is a little tricky to handle
scenarios in which FILESTREAM values are involved. This is because, if we choose the
current "standard" connection type for SSIS applications (the OLEDB connection), then
we are forced to access the FILESTREAM data using T-SQL which, as discussed, is not
ideal for performance reasons. Instead, in our labs, we'll use the ADO.NET connection
in our SSIS packages, allowing us to import and export FILESTREAM data using the
streaming APIs.

Lab 10: Loading BLOB Values into a FILESTREAM
Column Using SSIS

In this example, "North Pole Corporation" has a product catalog application that is used
to print occasional product catalogs. The catalog application has a very simple database
with only one table (Items), which stores product information. This table is synchronized
with the Products table in their main inventory management application using a nightly
batch process.

The nightly batch process updates the Items table with the most recent information
about the products that are currently available in the warehouse. It also copies the images
of items into a file system folder and stores the path to the image files in the Items table.
The catalog application uses the information in the Items table and the images stored in
the file system to build the catalogs.

Listing 6-1 shows what the data in the Items table looks like. (To keep the example
simple, I have omitted other columns such as SKU, Case Code, Price, and so on.)

229

Chapter 6: FILESTREAM with SSIS and SSRS

ItemID ItemCode ItemName ImageFileName
------ ---------- --------------- ----------------------
1 1001 Microsoft Mouse C:\Images\IMG_5383.jpg
2 3001 Dell Laptop C:\Images\IMG_5384.jpg
3 4005 Apple iPad C:\Images\IMG_5385.jpg
4 6009 Amazon Kindle C:\Images\IMG_5386.jpg

Listing 6-1:	 The data in the Items table.

North Pole Corporation has recently decided to upgrade their catalog application to
SQL Server 2008 R2. One of the reasons for the migration is to take advantage of the
FILESTREAM storage feature introduced in SQL Server 2008. They want to store the
images of products in a FILESTREAM column for better manageability.

The development team does not want to disturb the existing nightly job that synchro-
nizes product information. They decide to add one more job that runs after the nightly
synchronization job. The new job is responsible for loading the images of products into a
FILESTREAM column in the Items table.

To achieve this, they identified the steps below.

•	 Make appropriate database modifications to support storing FILESTREAM data:

•	 enable the FILESTREAM feature on the SQL Server instance

•	 add a FILESTREAM filegroup to the product catalog database

•	 add a FILESTREAM column to the Items table

•	 create the necessary stored procedures.

•	 Create an SSIS package that loads the files into the FILESTREAM column.

230

Chapter 6: FILESTREAM with SSIS and SSRS

Setting up the sample database

Listing 6-2 rebuilds the sample database for use with this lab.

USE master
GO
-- --
-- If the sample database exists, drop it and re-create it
-- --
IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter6\NorthPole.mdf'
) LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter6\NorthPole_log.ldf')
GO

Listing 6-2:	 Rebuilding the sample database.

Listing 6-3 creates the Items table and populates it with the sample data shown in Listing
6-1. Note that you need to change the file names used in the script to point to image files
that exist on your computer. You can download the images used in the example from
http://brurl.com/fs4. Download the file and extract into the c:\images folder.

USE NorthPole
GO

CREATE TABLE Items
 (
 ItemID INT IDENTITY ,
 ItemCode VARCHAR(10) ,
 ItemName VARCHAR(50) ,
 ImageFileName VARCHAR(100)
)

http://brurl.com/fs4

231

Chapter 6: FILESTREAM with SSIS and SSRS

GO

INSERT INTO Items
 (ItemCode ,
 ItemName ,
 ImageFileName
)
 SELECT '1001' ,
 'Microsoft Mouse' ,
 'C:\Images\IMG_5383.jpg'
 UNION ALL
 SELECT '3001' ,
 'Dell Laptop' ,
 'C:\Images\IMG_5384.jpg'
 UNION ALL
 SELECT '4005' ,
 'Apple iPad' ,
 'C:\Images\IMG_5385.jpg'
 UNION ALL
 SELECT '6009' ,
 'Amazon Kindle' ,
 'C:\Images\IMG_5386.jpg'

SELECT * FROM Items
/*
ItemID ItemCode ItemName ImageFileName
------ ---------- --------------- ----------------------
1 1001 Microsoft Mouse C:\Images\IMG_5383.jpg
2 3001 Dell Laptop C:\Images\IMG_5384.jpg
3 4005 Apple iPad C:\Images\IMG_5385.jpg
4 6009 Amazon Kindle C:\Images\IMG_5386.jpg
*/

Listing 6-3:	 Populating the sample table.

We'll assume at this stage that the team has enabled the FILESTREAM feature on the
SQL Server instance where the catalog application database is hosted. For a detailed
explanation of how to do this, see Appendix A: Configuring FILESTREAM on a SQL Server
Instance. Once FILESTREAM has been enabled in the current database, we can add a new
FILESTREAM filegroup to the current database (Listing 6-4).

232

Chapter 6: FILESTREAM with SSIS and SSRS

ALTER DATABASE NorthPole
ADD FILEGROUP NORTHPOLE_FS
CONTAINS FILESTREAM ;
GO

ALTER DATABASE NorthPole
ADD FILE (
NAME = NorthPoleFS,
FILENAME = 'C:\ArtOfFS\Demos\Chapter6\NorthPole_fs')
TO FILEGROUP NorthPole_fs ;
GO

Listing 6-4:	 Adding a FILESTREAM filegroup to the database.

As we discussed previously, there are a number of prerequisites for adding a FILESTREAM
column to an existing table; for full details on what is involved, refer back to Chapter 2.
Otherwise, go ahead and use the script in Listing 6-5 to add the column.

USE Northpole
GO

-- Add a UNIQUEIDENTIFIER column
ALTER TABLE Items
ADD ItemGuid UNIQUEIDENTIFIER NOT NULL
DEFAULT (NEWID())

-- Add a UNIQUE constraint
ALTER TABLE Items
ADD CONSTRAINT IX_ItemGuid UNIQUE(ItemGuid)

-- Create ROWGUIDCOL
ALTER TABLE Items
ALTER COLUMN ItemGUID ADD ROWGUIDCOL

-- Add the FILESTREAM column
ALTER TABLE [dbo].[Items]
ADD ItemImage VARBINARY(MAX) FILESTREAM NULL

Listing 6-5:	 Adding a FILESTREAM column to a table.

233

Chapter 6: FILESTREAM with SSIS and SSRS

When you have added the FILESTREAM column, run a SELECT query on the Items
table; you will see results similar to Listing 6-6. (Of course, the ItemGuid and
ImageFileName columns might show a different value.)

It.. ItemName ImageFileName ItemGuid ItemImage
---- -------- ------------------ ----------------- ---------
1001 Micros.. C:\..\IMG_5383.jpg 53C15E09-79CC-4.. NULL
3001 Dell L.. C:\..\IMG_5384.jpg AFA5D604-68EA-4.. NULL
4005 Apple .. C:\..\IMG_5385.jpg B6A6EE8D-7ED6-4.. NULL
6009 Amazon.. C:\..\IMG_5386.jpg 6EFF334C-B2C1-4.. NULL

Listing 6-6:	 The Items table with the FILESTREAM column.

What we are planning to do in this lab is to run a loop over all the rows in the Items
table to read the content of each image file specified in the ImageFileName column,
and then store it in the FILESTREAM column, ItemImage. Listing 6-7 creates the stored
procedure that the SSIS package will use to retrieve item information.

USE NorthPole
GO

CREATE PROCEDURE [dbo].[GetItems]
AS
 SELECT ItemID
 FROM Items ;

Listing 6-7:	 Creating a stored procedure to retrieve the ItemID column of all the rows.

The above stored procedure returns the ItemID of all the rows to be processed. The
SSIS package will loop through each row returned by this procedure and execute the
FILESTREAM-related code to load the images into the FILESTREAM column of the table.

All FILESTREAM operations should take place within the context of a SQL Server
transaction. You might want to do it in one of the two ways illustrated below.

234

Chapter 6: FILESTREAM with SSIS and SSRS

1.	 Start a SQL Server transaction at the beginning, process all the rows and commit.

2.	 Start a SQL Server transaction before processing each row and commit when the
given row is processed.

We will take Option 2 for this lab because, with this approach, locks are placed on each
row only for a minimal period of time. A row will be locked only when the processing
starts and the lock will be released as soon as the given row is processed.

To load each image file into the FILESTREAM column, we will need the pieces of
information below:

•	 the FILESTREAM transaction context

•	 the FILESTREAM logical path (the PathName() value)

•	 the name and location of the image file on the disk (to be loaded into the FILESTREAM
column).

We'll create another stored procedure that accepts the ItemID and returns the above
information. Listing 6-8 shows how to create the stored procedure.

USE [NorthPole]
GO

CREATE PROCEDURE [dbo].[GetItemInfo] (@ItemID INT)
AS
-- ---
-- If the FILESTREAM column is NULL, we cannot retrieve PathName().
-- In such a case, we need to use a dummy value
-- ---
 UPDATE dbo.items
 SET ItemImage = 0x
 WHERE ItemID = @ItemID
 AND ItemImage IS NULL

235

Chapter 6: FILESTREAM with SSIS and SSRS

-- --
-- SELECT the required information
-- --
 SELECT TOP 1
 GET_FILESTREAM_TRANSACTION_CONTEXT() AS FSContext ,
 ItemImage.PathName() AS FSPath ,
 ImageFileName
 FROM Items
 WHERE ItemID = @ItemID

Listing 6-8:	 Creating a stored procedure to retrieve information about the item.

Creating the SSIS package

We're now ready to create the SSIS package that loads the files into the FILESTREAM
column. We'll proceed as shown below.

1.	 Create an SSIS project.

2.	 Add an Execute SQL task to retrieve all the rows from the Items table.

3.	 Add a Foreach Loop container, which will help us to run a loop over all the rows
returned by the previous task.

4.	 Add a Script task into the Foreach Loop container, in which we will write the .NET
code to load the content of the disk file into the FILESTREAM column of the table
using FILESTREAM Managed APIs.

Creating a new SSIS project

Run SQL Server Business Intelligence Development Studio, and create a new SSIS
project. The New Project dialog box is shown in Figure 6-1. Enter a Name, Location, and
Solution Name, and click OK.

236

Chapter 6: FILESTREAM with SSIS and SSRS

Figure 6-1:	 Creating a new SSIS project.

When you create a new SSIS project, an empty SSIS package is automatically added to
the project. We'll rename the package FILESTREAM Stream In.dtsx; right-click on the
package name in the Solution Explorer and select Rename (Figure 6-2).

 Figure 6-2:	 Renaming the SSIS package.

237

Chapter 6: FILESTREAM with SSIS and SSRS

When renaming a package file, a message box will verify whether you would like to
rename the package object as well. Select Yes, and continue.

Figure 6-3:	 Package object rename prompt.

Creating an ADO.NET connection to the NorthPole
database

Next, let's create a connection to the catalog application database. SSIS Connection
Manager allows you to create different types of connections. Streaming access to the
FILESTREAM data should be done within the context of a SQL Server transaction.
Therefore, we will choose an ADO.NET connection instead of the usually preferred OLE
DB connection type.

Right-click on the Connection Managers window at the bottom of the SSIS Designer
and select New ADO.NET Connection. This opens the Configure ADO.NET Connection
Manager dialog box, where we can create and configure ADO.NET connections (Figure 6-4).

 Figure 6-4:	 The Configure ADO.NET Connection Manager.

238

Chapter 6: FILESTREAM with SSIS and SSRS

Click the New button to create a new connection. This opens the Connection Manager
dialog box (Figure 6-5). Make sure that the Provider selected is .Net Providers\SqlClient
Data Provider. Then specify the server and database names. Ensure you connect using
Windows authentication, because Win32 and Managed API access to the FILESTREAM
data is possible only with Windows authentication.

 Figure 6-5:	 The Connection Manager dialog box.

You can click Test Connection to check that the connection information you have
entered is correct. Click OK to save the information, and then click OK again on the
parent dialog box to save the configuration changes and return to Package Designer. You
will see a new connection object in the Connection Managers window (Figure 6-6).

Figure 6-6:	 The new connection in the Connection Managers window.

239

Chapter 6: FILESTREAM with SSIS and SSRS

For the sake of simplicity, we'll rename the connection NorthPole, so right-click on
the Connection object and select Rename, or simply select the object and press F2
(Figure 6-7).

 Figure 6-7:	 Renaming the connection object.

Adding an Execute SQL task

The next step is to add an Execute SQL task. You can find it in the toolbox under Control
Flow Items; drag and drop it onto the Package Designer window (Figure 6-8).

 Figure 6-8:	 Adding the Execute SQL task.

Now we'll configure the Execute SQL task to retrieve the item information. First, we'll
use the stored procedure to retrieve the ItemID from the Items table. We only need the
ItemID column because the information retrieved at this stage is used only for iterating

240

Chapter 6: FILESTREAM with SSIS and SSRS

over the rows; the Script task that we will create later will fetch additional information
based on the ItemID being processed at each iteration through the loop.

Now, in the Package Designer, double-click on the Execute SQL task and configure the
following properties on the General tab of the Execute SQL Task Editor (Figure 6-9):

•	 Name: Get Item List •	 Connection: NorthPole

•	 Description: Get list of items
to be processed

•	 SQLSourceType: Direct input

•	 Result Set: Full result set •	 SQL Statement: GetItems

•	 Connection Type: ADO.NET •	 IsQueryStoredProcedure: True.

 Figure 6-9:	 Configuring the properties of the Execute SQL task.

241

Chapter 6: FILESTREAM with SSIS and SSRS

We need to store the result set returned by the stored procedure in a local variable, and
iterate over it. On the Result Set page, click the Add button to add a new result set, and
then change the Result Name to 0 to map it to the first result set returned by the stored
procedure (Figure 6-10).

 Figure 6-10:	 Configuring the Result Set.

242

Chapter 6: FILESTREAM with SSIS and SSRS

From the Variable Name drop-down list, select <New Variable> to create a new variable
to hold the result set returned by the stored procedure. This opens the Add Variable
dialog box (Figure 6-11).

Change the Name to items and Value type to Object. The Foreach Loop that we will
add to the package in the next step will iterate over this variable to process all the rows
returned by the stored procedure.

 Figure 6-11:	 Adding the items variable to the Execute SQL task.

243

Chapter 6: FILESTREAM with SSIS and SSRS

Click OK to create the new variable. Make sure items is selected under Variable Name in
the Result Set page (Figure 6-12), and click OK to save the configuration.

 Figure 6-12:	 Mapping the new variable to the Result Set.

Adding a Foreach Loop container

The next step is to add a Foreach Loop container to the package. You can find it in the
toolbox under Control Flow Items; drag and drop it onto the Package Designer window,
then connect it with the Execute SQL task (Figure 6-13).

 Figure 6-13:	 Connecting the Get Item List and Foreach Loop Container objects.

244

Chapter 6: FILESTREAM with SSIS and SSRS

Double-click the header of the Foreach Loop container to open its configuration dialog
box (Figure 6-14). Then, in the Collection tab, set the following properties:

•	 Enumerator: Foreach ADO Enumerator

•	 ADO object source variable: User::items

•	 Enumeration Mode: Rows in the first table.

 Figure 6-14:	 Configuring the properties of the Foreach Loop.

This configuration asks the enumerator to loop through all the rows in the first table
contained in the object variable User::items. We have just configured the Execute SQL
task to assign the result set returned by the stored procedure into this variable, therefore
the Foreach Loop will iterate over the rows returned by the stored procedure.

245

Chapter 6: FILESTREAM with SSIS and SSRS

For each iteration of the loop, we will execute the .NET code that loads the image file into
the FILESTREAM column of the Items table. The code that we execute within the loop
needs to know the ItemID of the row currently being processed. This can be achieved by
creating one more user variable, into which the Foreach Loop component can store the
ItemID value of the current row. You can do this from the Variable Mappings tab of the
Foreach Loop Editor (Figure 6-15).

 Figure 6-15:	 Configuring the Variable Mappings for the Foreach Loop.

From the Variable drop-down list, select <New Variable> to create a new variable and
map it to the result set. This opens the Add Variable dialog box again; change the Name
to itemID, the Value type to Int32, and the Value to 0 (Figure 6-16).

246

Chapter 6: FILESTREAM with SSIS and SSRS

 Figure 6-16:	 Adding the itemID variable to the Foreach Loop.

Click OK to save the changes. Make sure that the newly created variable is selected in the
Variable column of the Variable Mappings page (Figure 6-17), and then click OK to save
the configuration.

 Figure 6-17:	 Mapping the new itemID variable.

247

Chapter 6: FILESTREAM with SSIS and SSRS

Set the Index column to 0 to tell the Foreach Loop container to store the value from the
first column of the result set in the itemID variable on each iteration. Click OK to save
the configuration, and return to the Package Designer.

Adding a Script task to perform FILESTREAM operations

The next step is to add a Script task to the package, which we will use to write the .NET
code to perform FILESTREAM operations using the FILESTREAM Managed API. You can
find the Script task in the toolbox under Control Flow Items. Drag and drop it onto the
Package Designer window, inside the Foreach Loop container (Figure 6-18).

 Figure 6-18:	 Adding the Script Task inside the Foreach Loop container.

Next, we will write some .NET code to perform the FILESTREAM operations. Depending
upon your preference, you can choose C# or VB, but note that this decision must be made
before you make any changes to the script task; once the script task has been modified,
you cannot change the .NET language associated with it.

248

Chapter 6: FILESTREAM with SSIS and SSRS

Double-click on the Script Task to configure the properties of the script and start writing
the FILESTREAM handling code (Figure 6-19).

Figure 6-19:	 Configuring the Script Task.

This property page allows you select the script language you wish to use. For the purpose
of this example, let us go ahead with C#.

Once configured, the Script task will be executed at each iteration of the Foreach Loop.
For each iteration, the Foreach Loop stores the value of the ItemID column in the
itemID variable. We need to pass the itemID variable to the Script task so that we can
write the code to process the item specified by the variable.

Click on the button to the right of ReadOnlyVariables to open the Select Variables dialog
box. Then, locate the itemID variable and select it (Figure 6-20).

249

Chapter 6: FILESTREAM with SSIS and SSRS

 Figure 6-20:	 Selecting the itemID variable.

Click OK to save the changes. On the parent dialog box, click the Edit Script button. This
will open the C# code editor in a new Visual Studio window.

Writing the FILESTREAM processing code

The next step is to write the code needed to perform the FILESTREAM operations. This is
the most important part of this lab. We will modify the template code given by the Script
task to suit our requirements.

To start with, we need to add a few additional namespace declarations to the existing
namespace declarations, as shown in Listing 6-9.

250

Chapter 6: FILESTREAM with SSIS and SSRS

using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.IO;

Listing 6-9:	 Additional namespace declarations.

Next, we need to create a connection to the target database. We already created a
connection object earlier in this lab. Listing 6-10 demonstrates how to obtain a
SqlConnection object from the Connection Manager we created using the
Package Designer.

SqlConnection con;
con = Dts.Connections["NorthPole"].AcquireConnection(null) as SqlConnection;

Listing 6-10:	 Retrieving a SqlConnection object from the Connection Manager.

Add the above code (and all the sample codes provided in Listings 6-11 to 6-16) into
the void main() method the Package Designer auto-generated, at the location where
it says:

//TODO: Add your code here

Next, we need to determine the ItemID to be processed in the current iteration of the
loop. We already created a package variable to which the ItemID will be assigned at
each iteration of the loop. What we are doing here is assigning the value of the package
variable ItemID to a local variable ItemID in the script for further use.

Listing 6-11 shows how to access the ItemID variable from the Script task.

Int32 ItemID = (int) Dts.Variables["User::itemID"].Value;

Listing 6-11:	 Reading the value of a package variable from the Script task.

251

Chapter 6: FILESTREAM with SSIS and SSRS

So far, we have obtained a Connection object pointing to the target database, and
identified the ID of the item to be processed.

The approach presented in this lab does a round trip to the server at each iteration of the
loop. This is to keep the duration of FILESTREAM transactions minimal. Remember that
all access to the FILESTREAM data should be made within the scope of a transaction.

An alternative approach would be to start a transaction at the beginning of the process
and fetch the PathName() of all the rows with a single database call. In this case, the
additional round trips to the server can be avoided. However, this approach will keep a
top level transaction open until the process completes, which could block the requests
from other connections.

We now need a few local variables to store the FILESTREAM transaction context, the
logical path name of the FILESTREAM data value, and the path to the disk file that we
want to load into the FILESTREAM column, as shown in Listing 6-12.

byte[] FSContext = null;
string FSPathName = string.Empty;
string FileName = string.Empty;

Listing 6-12:	 Setting up the local variables.

Next, we'll start a database transaction and execute the stored procedure (Listing 6-13).

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.CommandText = "GetItemInfo";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue("@ItemID", ItemID);
SqlTransaction transaction = con.BeginTransaction("ItemTran");
cmd.Transaction = transaction;
SqlDataReader reader = cmd.ExecuteReader();

Listing 6-13:	 Starting a database transaction and executing the stored procedure.

252

Chapter 6: FILESTREAM with SSIS and SSRS

The stored procedure will return the three critical pieces of information that we needed.
The code in Listing 6-14 reads these values and assigns them to the local variables we
created earlier.

reader.Read()
FSContext = (reader["FSContext"] as byte[]);
FSPathName = reader["FSPath"].ToString();
FileName = reader["ImageFileName"].ToString();
reader.Close();

Listing 6-14:	 Reading the values returned by the stored procedure.

Listing 6-15 opens the FILESTREAM data file for writing, and the image file for reading. It
then reads from the disk file and writes into the FILESTREAM column.

// Open the FILESTREAM data file for writing
SqlFileStream fs = new SqlFileStream(FSPathName, FSContext,
 FileAccess.Write);

// Open the disk file for reading
FileStream localFile = new FileStream(FileName,
 FileMode.Open, FileAccess.Read);

// Start transfering data from disk file to FILESTREAM data file
BinaryWriter bw = new BinaryWriter(fs);
const int bufferSize = 4096;
byte[] buffer = new byte[bufferSize];
int bytes = localFile.Read(buffer, 0, bufferSize);
while (bytes > 0)
{
 bw.Write(buffer, 0, bytes);
 bw.Flush();
 bytes = localFile.Read(buffer, 0, bufferSize);
}

Listing 6-15:	 Reading from the disk file and writing to the FILESTREAM column.

253

Chapter 6: FILESTREAM with SSIS and SSRS

It's now time to close the objects to release the resources and commit the transaction.
Before we exit, we also set the TaskResult property of the Dts object to Success, to
indicate that the process was successful (Listing 6-16).

// Close the files
bw.Close();
localFile.Close();
fs.Close();

// Commit the transaction
cmd.Transaction.Commit();
Dts.TaskResult = (int)ScriptResults.Success;

Listing 6-16:	 Closing the files and committing the transaction.

To keep the code listing simple, we have not included any error-handling code. It is
recommended that you wrap your code within a try-catch block to handle any
possible errors. The above snippet assumes that the code executes successfully and
therefore commits the transaction and sets the task result to Success. Note that if
an error occurs after the transaction is opened, you should explicitly roll back the
transaction from your catch/finally block. You may also want to set the task status
to Failure as demonstrated in Listing 6-17 to indicate that the script did not succeed.

cmd.Transaction.Rollback();
Dts.TaskResult = (int)ScriptResults.Failure;

Listing 6-17:	 Rolling back the transaction in the event of an error.

The complete listing of the C# source code is available in the download. The code
listing for VB is also supplied; if you want to write your code using VB, remember you
must change the ScriptLanguage in the property page of the Script task before the Script
task is modified.

254

Chapter 6: FILESTREAM with SSIS and SSRS

Congratulations! We have successfully completed the first SSIS lab. Execute the
package and verify that it executes without error and the FILESTREAM columns are
updated correctly.

The simplest way to verify that the image files are successfully loaded into the
FILESTREAM column is to run the query in Listing 6-18 and look at the size of the BLOB
value stored in each row.

SELECT
 ItemCode,
 ImageFileName,
 DATALENGTH(ItemImage) AS FileSize
FROM Items
/*
ItemCode ImageFileName FileSize
-------- ---------------------- --------
1001 C:\Images\IMG_5383.jpg 5303
3001 C:\Images\IMG_5384.jpg 5344
4005 C:\Images\IMG_5385.jpg 7489
6009 C:\Images\IMG_5386.jpg 6470
*/

Listing 6-18:	 Verifying that image files are successfully loaded into the FILESTREAM column.

You can match the FileSize value returned by the query with the size of the disk file to
verify that the image files have been successfully loaded into the FILESTREAM column.

We will also cross-verify this in the next lab, where we will perform the reverse operation.
We will export the BLOB values from the FILESTREAM column into a series of disk files.

Debugging the code

If you want to debug your code, you can set break points within the code and the
execution will stop there. If your script task has a break point, it will show a red circle in
the designer window as shown in Figure 6-21.

255

Chapter 6: FILESTREAM with SSIS and SSRS

Figure 6-21:	 A break point in the Script Task.

If you are on a 64-bit computer, you may not be able to debug the package. From the
Debugging tab in the properties of the project, you need to change the Run64BitRuntime
property to False (Figure 6-22).

Figure 6-22:	 Changing the Debug Options in the project's properties.

256

Chapter 6: FILESTREAM with SSIS and SSRS

Lab 11: Exporting BLOB Values from a
FILESTREAM Column Using SSIS

In the previous lab, we saw how to load the content of disk files into the FILESTREAM
column of a table using an SSIS package. In this lab, we will do the reverse of this; we will
copy the BLOB values from the FILESTREAM column to disk files.

Creating the SSIS package

Most of the code for this lab is the same as for the previous lab, so an easy way to start this
lab is to make a copy of the SSIS package we created in Lab 10, and modify it.

Make a copy of the FILESTREAM Stream In.dtsx package, and then rename it to
FILESTREAM Stream Out.dtsx.

Setting the output folder

We'll assume that the content of the FILESTREAM column needs to be copied to a
specific location on the local disk. We'll keep the name of the target location in a variable,
instead of hard-coding it in our script. Select the Variables option from the SSIS menu to
create a new variable. In the Variables dialog box, click the New Variable button to add a
new variable to the list of existing variables (Figure 6-23).

257

Chapter 6: FILESTREAM with SSIS and SSRS

Figure 6-23:	 Creating a new variable.

When the variable has been added, edit the information as follows:

•	 Name: outputFolder

•	 Scope: FILESTREAM Stream Out

•	 Data Type: String

•	 Value: c:\temp

The Execute SQL task

The Execute SQL task does not need any changes. We will use the same stored procedure
that we used in Lab 10, which returns a result set containing the ItemID of all the rows
to be processed.

The Foreach Loop container

The Foreach Loop container does not need any changes either; it will iterate over each
row returned by the Execute SQL task.

258

Chapter 6: FILESTREAM with SSIS and SSRS

The Script task

The Script task needs a lot of reworking. Instead of copying BLOB data from the disk file
into the FILESTREAM column, the version that we need to create now will read from the
FILESTREAM column and write into disk files.

The new variable that we just added needs to be passed into the script. In the Script Task
Editor, for ReadOnlyVariables, select outputFolder (Figure 6-24).

Figure 6-24:	 Adding a variable to the Script Task.

The script also needs a number of changes. To start with, we have to retrieve the value
of the package variable outputFolder and store it into a .NET string data type variable
(Listing 6-19).

string OutputFolder = Dts.Variables["User::outputFolder"].Value.ToString();

Listing 6-19:	 Retrieving and storing the outputFolder variable.

259

Chapter 6: FILESTREAM with SSIS and SSRS

In this lab, the FILESTREAM file must be opened for reading, and the disk file needs to be
created and opened for writing.

The data stored in the table contains the full path and file name, for example:
c:\filestream\images\abc.jpeg. We created a package variable earlier to store the location
in which the image files need to be created, so we now need to build a new path based
on the file path stored in the table and the target folder location stored in the package
variable. Listing 6-20 shows how to do this.

// Open the FILESTREAM data file for reading
SqlFileStream fs = new SqlFileStream(FSPathName, FSContext,
 FileAccess.Read);

// Open the disk file for writing
string OnlyFilename = System.IO.Path.GetFileName(FileName);
FileStream localFile = new FileStream(OutputFolder + OnlyFilename,
 FileMode.Create, FileAccess.Write);

// Note that the BinaryWriter should be initialized with the
// localFile object
BinaryWriter bw = new BinaryWriter(localFile);

Listing 6-20:	 Building a path to the target location.

When you have completed the changes, execute the SSIS package and verify that the
FILESTREAM data is correctly exported to the target location specified in the package.

The complete listings for the C# and VB source code to export BLOB values
from a FILESTREAM column into disk files in the specified location are available
in the download.

260

Chapter 6: FILESTREAM with SSIS and SSRS

Lab 12: Displaying FILESTREAM Data in SSRS
Reports
Images stored in the FILESTREAM column of a SQL Server database can be displayed
using SSRS reports. You can display an image control to render the images on the report.

We have discussed, several times, that accessing FILESTREAM data through T-SQL is
much less efficient than using the streaming APIs (Win32 or Managed APIs) provided by
SQL Server. However, SSRS does not provide a way to access the FILESTREAM data using
the streaming APIs. All access to the FILESTREAM data must go through T-SQL, and the
FILESTREAM columns must be accessed as though they are VARBINARY(MAX) values.
So, when creating a report that uses images stored in the FILESTREAM column of a SQL
Server database, you do nothing that is FILESTREAM-specific.

In Labs 9 and 10, we looked at the example of a product catalog application used by North
Pole Corporation and we saw how to import and export FILESTREAM data using SSIS.
Now let's look at another requirement that is part of the product catalog application
project: building the catalog.

In this lab, we'll create a SSRS report that will list the items in the catalog application
database along with a thumbnail image of the items. The images are stored in the
FILESTREAM column of the Items table. Note that this lab focuses only on the basic
report design features required for completing the walk-through; detailed coverage of the
SSRS features is beyond the scope of this book.

To complete this lab we will:

•	 create a new SSRS project •	 design the report

•	 create a data source to connect to the
catalog application database

•	 preview the report.

•	 create a dataset to retrieve
product information

261

Chapter 6: FILESTREAM with SSIS and SSRS

In a typical report development environment you would go further, and deploy the
report, but this and all the other steps in a typical report development cycle remain the
same as for a non-FILESTREAM column, and therefore they are not discussed in detail
in this lab.

Creating an SSRS report project

To create a new SSRS project, start Business Intelligence Development Studio and select
New Project from the File menu (Figure 6-25).

Figure 6-25:	 Creating a new SSRS project.

262

Chapter 6: FILESTREAM with SSIS and SSRS

From the Business Intelligence Projects, select Report Server Project. Click OK to create
an empty solution and project. Once the project has been created, the next step is to add
a new report to the project. In the Solution Explorer, right-click on the Reports node and
select Add | New Item. Then, from the Report Project templates, select Report (Figure
6-26).

Figure 6-26:	 Creating a new report.

Name the report ItemList.rdl, and then click Add to add the new, empty report to our
project. We are now ready to get started.

263

Chapter 6: FILESTREAM with SSIS and SSRS

Creating a data source

The next step is to create a data source pointing to the database of the product catalog
application. Note that, in most real world reporting service projects, you will create
shared data sources and shared datasets so that the object definitions can be reused.
However, for this example we will specify an embedded connection.

In the Report Data window, right-click the Data Sources node and select Add Data
Source. When the Data Source Properties dialog box opens, either enter the connection
string, or click Edit to build a connection string (Figure 6-27). Specify the SQL Server
instance that hosts the product catalog database. When we created the data source for
our SSIS lab, we were very careful to use Windows authentication in order to be able
to access the data using the streaming APIs. Since SSRS does not support accessing
the FILESTREAM data using Win32 or Managed APIs, we are free to choose between
Windows authentication and SQL Server authentication.

 Figure 6-27:	 Creating the data source.

Click OK on the Data Source Properties dialog box to save the newly created data source
and return to the Report Designer.

264

Chapter 6: FILESTREAM with SSIS and SSRS

Creating a dataset

This is the first step in which we are going to do something that touches the
FILESTREAM data: we'll create a dataset that fetches the product information and images
from the Items table.

To begin, right-click on the Datasets node in the Report Data window and select Add
Dataset in order to open the Dataset Properties dialog box (Figure 6-28). We'll configure
the dataset as an embedded dataset – fill out the properties as follows:

•	 Name: ProductCatalog

•	 Type: Use a dataset embedded in my report

•	 Data source: NorthPole

•	 Query type: Text

•	 Query: SELECT ItemCode, ItemName, ItemImage FROM items

 Figure 6-28:	 Adding a dataset to retrieve the product information.

265

Chapter 6: FILESTREAM with SSIS and SSRS

Click OK to save the dataset properties and return to the Report Designer. In the Report
Data explorer, you will see the new dataset along with the data columns (Figure 6-29).

 Figure 6-29:	 The Report Data explorer showing the new dataset.

We will use this dataset to build our product catalog.

Designing the report

The next step is to design the report. What we need is a tabular representation of the item
information. One way to achieve this is by using a Table control. In the Report Items
toolbox, locate the Table control and then drag and drop it into the Report Designer. This
adds an empty table to the report.

Now we'll bind the columns to the columns returned by our dataset. Drag and drop the
itemcode and itemname columns from the Report Data explorer into the first and
second columns, respectively, of the table control (Figure 6-30).

266

Chapter 6: FILESTREAM with SSIS and SSRS

 Figure 6-30:	 Binding the columns returned by the dataset to the Table control.

In the third column, we will display a thumbnail image of the product, so add an Image
control to the third column: Locate the Image control in the toolbox, then drag and drop
it into the third column of the Table control. When you drop an image control, it opens
the Image Properties dialog box, shown in Figure 6-31 (if it does not open, right-click on
the image control and select Image Properties), which needs to be configured as follows:

•	 Name: ItemImage

•	 Select the image source: Database

•	 Use this field: ItemImage

•	 Use this MIME type: select the type of image – in this example, we used image/jpeg

267

Chapter 6: FILESTREAM with SSIS and SSRS

 Figure 6-31:	 Setting the image properties.

With this, we have completed the report design. You can improve the appearance by
modifying the display attributes such as font, size, border, background, color, and so on,
as required.

 Figure 6-32:	 The completed report design.

268

Chapter 6: FILESTREAM with SSIS and SSRS

Previewing the report

I'm sure you will agree that this is the easiest part of the process. If the report is designed
correctly and the configuration is correct, it is just a matter of clicking the Preview tab
(Figure 6-33).

 Figure 6-33:	 Previewing the report.

The goal of this lab is to help you get started with building SSRS reports that use images
stored in FILESTREAM columns. Remember that you are accessing the FILESTREAM
data over T-SQL, and the performance benefits offered by I/O streaming are not available
when using FILESTREAM data in SSRS reports.

269

Chapter 6: FILESTREAM with SSIS and SSRS

Summary

The chapter presented three labs to help you to get started with creating SSRS and SSIS
applications that deal with FILESTREAM data.

FILESTREAM columns can be accessed using the streaming APIs from SSIS using a Script
task, which means that you can write.NET code that uses the Managed APIs to read and
write FILESTREAM data. The first two labs demonstrated how to import and export
FILESTREAM data using SSIS.

Though FILESTREAM columns can be accessed from SSRS, it does not provide a way
to use the Win32 or Managed APIs; all access to the FILESTREAM data is done through
T-SQL. An SSRS report must access the FILESTREAM columns as though they are
VARBINARY(MAX) columns, as we saw in Lab 12.

270

Chapter 7: FILESTREAM Database
Administration

The previous chapters have discussed development with the FILESTREAM feature in
quite some detail. Here, we begin a sequence of four chapters dedicated to the admin-
istration and management of FILESTREAM-enabled databases. In this chapter, we'll
examine some special considerations for FILESTREAM-enabled databases, and how
the presence of FILESTREAM data might affect common database administrative tasks.
Specifically, we will cover the points below.

•	 Transaction isolation levels – The behavior of FILESTREAM-enabled databases under
each of the available levels, and where and how this differs from standard databases.

•	 Moving FILESTREAM-enabled databases from one location to another – The main
difference is the need to move the FILESTREAM data container as well as data and
log files.

•	 FILESTREAM garbage files – Possible issues associated with creation of an excessive
number of FILESTREAM disk files, due to frequent modification of FILESTREAM data,
and how SQL Server manages garbage collection of these files.

•	 Common causes of a corrupt FILESTREAM database – And how to use DBCC checks
to examine and possibly repair damaged databases.

•	 Coping with growth of FILESTREAM databases – How to move FILESTREAM
data partially or fully to new disk volumes, by rebuilding a clustered index in a new
filegroup, and by partitioning FILESTREAM tables.

•	 Migrating FILESTREAM data – Moving large databases using scripting, or the
Database Publishing Wizard, in cases where restoring a backup is not feasible.

271

Chapter 7: FILESTREAM Database Administration

FILESTREAM and Database Transaction Isolation
Levels

With SQL Server 2008, it was not possible to enable the snapshot isolation level for
databases that contained FILESTREAM data. Hence, it is only possible to operate such
SQL 2008 FILESTREAM databases using one of the standard ANSI transaction isolation
levels (READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE).
However, in SQL Server 2008 R2, and later, the snapshot isolation level has been
extended to support FILESTREAM data.

If the row to be accessed is not locked by another process, FILESTREAM data can be
accessed for reading or writing under all the transaction isolation levels.

If the row being accessed is locked (shared or exclusive mode) by another process, a write
operation will fail under all the transaction isolation levels.

If the row being accessed is locked in Shared (S) mode by another process, FILESTREAM
data can be accessed for reading under all the transaction isolation levels. However, if
the row is locked in Exclusive (X) mode by another process, FILESTREAM data can be
read only using the snapshot isolation level, and you will get the previous version of the
FILESTREAM data value, if the other process has modified the FILESTREAM value.

READ COMMITTED, REPEATABLE READ and
SERIALIZABLE isolation levels

The behavior of FILESTREAM data is the same for READ COMMITTED, REPEATABLE
READ and SERIALIZABLE. If the row that contains the required FILESTREAM value is
exclusively locked by another process, a call to PathName() to read this data, or write to
it, will be blocked.

272

Chapter 7: FILESTREAM Database Administration

If the X lock is held for longer than the timeout duration, an error will be returned such
as the following (when using ADO.NET):

Timeout expired. The timeout period elapsed prior to completion of the operation or the

server is not responding.

If the row is not locked at the time of retrieving the PathName() value and the
FILESTREAM transaction context, but another process obtains an exclusive lock on
the row right after that and before the Win32 API call is made, the attempt to open the
FILESTREAM data file for read or write operation will fail with the following message:

The process cannot access the file specified because it has been opened in another

transaction.

If the row that contains the FILESTREAM value is locked in Shared (S) mode, a call to
PathName() will succeed. In such a case, FILESTREAM data will be available for reading.
However, if an attempt is made to write to the FILESTREAM data file, the operation will
fail with the same message.

READ UNCOMMITTED isolation level

Under the READ UNCOMMITTED isolation level, a call to PathName() returns NULL if the
row is exclusively locked by another process, and neither read nor write operations can be
performed on the FILESTREAM cell using Win32/Managed APIs or TSQL.

If there is a shared lock on the row, PathName() returns the correct value, and you can
access the FILESTREAM data for reading. If you attempt to open the FILESTREAM data
file for writing, SQL Server will generate the same error as seen previously.

273

Chapter 7: FILESTREAM Database Administration

Snapshot isolation level

This new versioning-based isolation was introduced in SQL Server 2005 but has only
been available since SQL Server 2008 R2 for FILESTREAM databases. When a database is
operating in snapshot isolation, a client application can read FILESTREAM values stored
on rows that are exclusively locked by another process, using T-SQL or the Win32 API; in
other words, unlike with the standard transaction isolation levels, a call to PathName() is
not blocked in this case. If the other transaction has modified the FILESTREAM value, the
version of the FILESTREAM data file returned will be as it existed at the time the current
transaction started.

Note that for databases containing only relational data, the snapshot isolation level
introduces new possible new SNAPSHOT modes of operation:

•	 SNAPSHOT mode – queries return committed data as of the beginning of the
transaction

•	 READ_COMMITTED_SNAPSHOT mode – queries return committed data as of the
beginning of the current statement.

However, for FILESTREAM-enabled databases with READ_COMMITTED_SNAPSHOT
mode enabled, data will be returned as it existed at the start of the transaction. In
other words, there is effectively only one mode of snapshot isolation available for
FILESTREAM databases.

Note that snapshot isolation level is disabled by default; the query in Listing 7-1 will
confirm whether or not it is enabled on a named database.

274

Chapter 7: FILESTREAM Database Administration

SELECT
 snapshot_isolation_state_desc
FROM sys.databases
WHERE name = DB_NAME()
/*
snapshot_isolation_state_desc

OFF
*/

Listing 7-1:	 Determining whether snapshot isolation level is enabled.

If the snapshot isolation level is disabled (OFF), we can enable it by running the query
in Listing 7-2. Note, again, that SQL Server 2008 does not allow you to enable snapshot
isolation level on databases having FILESTREAM filegroups. This restriction has been
removed in SQL Server 2008 R2.

ALTER DATABASE NorthPole
SET ALLOW_SNAPSHOT_ISOLATION ON

Listing 7-2:	 Enabling snapshot isolation level on a database.

Therefore, starting from SQL Server 2008 R2, we can use snapshot isolation to access a
FILESTREAM data value for read operations even if the row being read is locked (shared
or exclusive). However, write operations are not permitted on the rows that are already
locked (shared or exclusive) by another session. If any attempt is made to do so, SQL
Server will display the following error:

The process cannot access the file specified because it has been opened in another

transaction.

275

Chapter 7: FILESTREAM Database Administration

Summary of FILESTREAM behavior under
transaction isolation levels

The following table summarizes the behavior of FILESTREAM operations under various
transaction isolation levels, when the row being accessed is locked by another process.

Row is locked by
another process

Isolation level
T-SQL Win32

Read Write Read Write

EXCLUSIVE READ COMMITTED No No No No

EXCLUSIVE READ UNCOMMITTED Yes No No No

EXCLUSIVE REPEATABLE READ No No No No

EXCLUSIVE SERIALIZABLE No No No No

EXCLUSIVE
SNAPSHOT(SQL
Server 2008 R2
or later)

Yes No Yes No

SHARED READ COMMITTED Yes No Yes No

SHARED READ UNCOMMITTED Yes No Yes No

SHARED REPEATABLE READ Yes No Yes No

SHARED SERIALIZABLE Yes No Yes No

SHARED
SNAPSHOT(SQL
Server 2008 R2
or later)

Yes No Yes No

Table 7-1:	 Summary of behavior of FILESTREAM operations with isolation levels.

276

Chapter 7: FILESTREAM Database Administration

Detaching and Attaching FILESTREAM
Databases

It is common practice to detach and attach database files in order to move a database
from one location to another. In a typical detach-attach process, you detach the database,
move the MDF and LDF files to the new location, and then perform an attach operation.
The only difference for a FILESTREAM-enabled database is that, along with your data
(MDF) and log (LDF) files, you also need to move the FILESTREAM data container.

SSMS does not fully support attaching FILESTREAM-enabled databases

The Attach Databases dialog box does not allow you to specify the location of the FILESTREAM data

file. As a result, you cannot attach a FILESTREAM-enabled database using SSMS if the path to the

FILESTREAM container is different from the original location.

Let's see this in action. Listing 7-3 re-creates our, by now familiar, NorthPole database
and loads an image into a FILESTREAM column. As usual, change the locations and paths
as required.

USE master
GO

-- If the sample database exists, drop it and re-create it
IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs') LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_log.ldf')
GO

277

Chapter 7: FILESTREAM Database Administration

-- Create a table with a FILESTREAM column
USE NorthPole
GO

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)
GO

-- INSERT a row with FILESTREAM data and insert the data to the table
INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)
 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 bulkcolumn
 FROM OPENROWSET(BULK 'C:\ArtOfFS\Demos\Images\MicrosoftMouse.jpg',
 SINGLE_BLOB) AS x

Listing 7-3:	 T-SQL script to create a sample database.

Let's assume that this database underpins a successful application and we need to move
the data and log files to new, bigger hardware. To simulate this in our example, we'll
move the primary data file and log file to C:\temp\data, and the FILESTREAM container
to C:\temp\FS. First, however, we need to detach the database, as shown in Listing 7-4
(alternatively, you can right-click the database in SSMS Object Explorer and select
Tasks | Detach…).

278

Chapter 7: FILESTREAM Database Administration

-- Detach the database
USE master
GO
EXEC sp_detach_db @dbname = 'NorthPole'

Listing 7-4:	 Detaching a FILESTREAM-enabled database.

Next, locate the primary data file, log file and FILESTREAM data container, and move
them to their new locations. Now we're ready to reattach the database to our SQL Server
instance. This could be the same instance, a different instance on the same computer, or
a different instance on a different computer. Note, though, that if the database is being
attached to a different SQL Server instance, we must ensure that FILESTREAM is enabled
on the target server (see Appendix A) and that the target SQL Server instance should be
running the same, or a later, version of SQL Server. You can detach a SQL Server 2008
and attach it to a SQL Server 2012 instance, but you cannot detach a SQL Server 2012
database and attach it to a SQL Server 2008/R2 instance.

Once these files have been moved to the new location, we are ready to attach the database
as shown in Listing 7-5.

-- Attach the FILESTREAM database
CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\Temp\Data\NorthPole.mdf'),
FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\Temp\FS\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\Temp\Data\NorthPole_log.ldf')
FOR ATTACH
GO

Listing 7-5:	 Attaching a FILESTREAM-enabled database.

To verify success, connect to the NorthPole database and fire off a simple query to
retrieve the data from the items table.

279

Chapter 7: FILESTREAM Database Administration

FILESTREAM and Garbage Files

SQL Server does not support in-place updates of the disk file storing the BLOB data for a
FILESTREAM column. A disk file is created for every non-NULL FILESTREAM data value
stored in every FILESTREAM column of every table in the database. When you update
the BLOB value stored in a FILESTREAM cell, the associated disk file also needs to be
updated. What SQL Server does internally is to create a new file with the modified value.
The old version of the file will lie around in the folder until the file is no longer needed.
Unwanted files are later deleted by an asynchronous garbage collection process that runs
in the background. An old version of a FILESTREAM data file is available for garbage
collection when a database CHECKPOINT occurs after the transaction log is truncated past
the LSN (Log Sequence Number) which generated the new file.

For this reason, FILESTREAM storage is not ideal for cases where the BLOB data stored
in the FILESTREAM column is frequently updated. Every time the FILESTREAM value
is updated (from a non-NULL value to another non-NULL value) SQL Server will have
to create a new file with the modified value. If the frequency of such update operations
is high, you might experience severe performance problems. In such a case, storing the
BLOB data in the file system and storing the path to the disk file in a table might be more
efficient than using a FILESTREAM column.

Garbage files and recovery models

Under the SIMPLE recovery model, the FILESTREAM garbage collector is triggered when
a database CHECKPOINT occurs. You can issue a CHECKPOINT to trigger the garbage
collection thread to clean up the unwanted files in the FILESTREAM data container.

Under the FULL and BULK_LOGGED recovery models, you might notice that issuing a
CHECKPOINT does not clean up the unwanted files in the FILESTREAM data container.
A CHECKPOINT may still run the garbage collector, but it may not remove the file as you
would normally expect. This is because the transaction log virtual log file (VLF) that

280

Chapter 7: FILESTREAM Database Administration

contains the record is still active, and will remain so until the log is backed up. Every
FILESTREAM operation is mapped to a transaction LSN in the transaction log. Under
FULL and BULK_LOGGED recovery models, the garbage collector will remove a file only
after the transaction log VLF that contains the LSN associated with the FILESTREAM
operation is not part of the active log.

FILESTREAM garbage collection and tombstone
tables

As we have seen, SQL Server does not support in-place updates of FILESTREAM data. If
we modify a BLOB value stored in a FILESTREAM column, SQL Server will create a new
disk file with the modified value. The old file will stay around for some time until it is "no
longer needed" and the garbage collector steps in and deletes it.

It is interesting to note how SQL Server keeps track of the garbage files. If we modify a
few FILESTREAM data values and look into the FILESTREAM data folder, we'll find many
more files than the number of rows in the table. So the question is, "Which are garbage
files and which are not?" SQL Server creates an internal table called the FILESTREAM
tombstone table to hold the details of garbage files to be removed. The garbage collector
queries this table to identify the garbage files and removes them when those files are no
longer needed.

To see this in action, run the script in Listing 7-6 to create a sample database containing a
table with two FILESTREAM columns.

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

281

Chapter 7: FILESTREAM Database Administration

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs') LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_log.ldf')
GO

USE NorthPole
GO

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage1] VARBINARY(MAX) FILESTREAM
 NULL ,
 [ItemImage2] VARBINARY(MAX) FILESTREAM
 NULL
)

Listing 7-6:	 Creating an example database with two FILESTREAM columns.

Now we'll insert a row into the FILESTREAM table (Listing 7-7).

INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage1 ,
 ItemImage2
)
 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 0x1 ,
 0x1

Listing 7-7:	 Inserting a row into the table.

282

Chapter 7: FILESTREAM Database Administration

Run the code in Listing 7-8 to update the FILESTREAM columns. The first column is
updated to NULL and SQL Server discards the FILESTREAM data file associated with
the field. The second column is updated with a new value, and SQL Server creates a new
version of the file containing the new value, and discards the previous file.

UPDATE Items
SET ItemImage1 = NULL ,
 ItemImage2 = 0x2

Listing 7-8:	 Updating the columns to create garbage files.

After the UPDATE operation, you will see three files in the FILESTREAM data container.
Out of the three, two are no longer needed. Those two files will be registered in the
FILESTREAM tombstone table. We can try to read the names of those files from that
table, but first we need to find out its name, as shown in Listing 7-9.

SELECT
 name
FROM sys.internal_tables
WHERE name LIKE 'FILESTREAM_tomb%'
/*
name

FILESTREAM_tombstone_2073058421
*/

Listing 7-9:	 Retrieving the name of the FILESTREAM tombstone table.

However, the tombstone table cannot be accessed from the user mode queries. To
read information from this table, we need to connect to the server using Dedicated
Administrator Connection (DAC).

283

Chapter 7: FILESTREAM Database Administration

To make a DAC via SSMS:

•	 from the File menu, select New, Database Engine Query

•	 in the connection dialog box, enter ADMIN:your-server-name; for example, if your
server name is Server1, enter ADMIN:Server1 (Figure 9-1)

•	 enter the credentials

•	 write your queries in the new query window.

Figure 7-1: 	 Making a DAC using SSMS.

Please note that DAC is for diagnostic/debugging purposes and should not be misused.
Also note that only one DAC connection is possible at any given time, which means
that the Object Explorer window cannot display the tree view of the database to which
you are connected, and this is why you will get an error when trying to connect using
DAC from the New Query button, or the Connect to Database Engine option of the
Object Explorer.

284

Chapter 7: FILESTREAM Database Administration

Connect to your instance using DAC and run the query in Listing 7-10, which will retrieve
the list of garbage files in the current database. If you have followed the example, the
query will return details of two garbage files.

SELECT
 physical_name AS FILESTREAMFolder,
 rowset_guid AS TableFolder,
 column_guid AS ColumnFolder,
 FILESTREAM_value_name AS FILESTREAMFile
FROM sys.filestream_tombstone_2073058421 ft
INNER JOIN sys.database_files df
 ON df.file_id = ft.file_id

/*
FILESTREAMFolder TableFolder ColumnFolder FILESTREAMFile
----------------------- ------------- ------------- ---------------
C:\Demos\FS\NorthPoleFS 448BFCA8-6... 91DFDC80-E... 00000018-000...
C:\Demos\FS\NorthPoleFS 448BFCA8-6... 2A7202BA-4... 00000018-000...
*/

Listing 7-10:	 Retrieving the list of garbage files.

FILESTREAM Data Corruption and DBCC Checks

One of the most undesirable situations for a database administrator is database
corruption. In most cases, regular database checks and maintenance activities will help a
database administrator to ensure that the databases are healthy and free from corruption.

A common cause of a corrupted FILESTREAM database is an "over-enthusiastic" admin-
istrative user who wants to play with the FILESTREAM data files directly. Remember that
all access to the FILESTREAM data should be made through SQL Server. Direct access to
the FILESTREAM data using the file system tools may corrupt your database.

285

Chapter 7: FILESTREAM Database Administration

The following sections examine a few common causes of a corrupt FILESTREAM
database, and how to use DBCC CHECKDB or DBCC CHECKTABLE to check the consistency
of your database along with the FILESTREAM data, and try to fix any corruption issues.

Corruption caused by missing FILESTREAM data
files

The recommended way to delete a FILESTREAM data file is by setting the value of the
column to NULL by performing a T-SQL UPDATE operation. If a user or software process
directly deletes a file from the FILESTREAM data container, you will end up with a
corrupted database. Let's replicate this scenario here (we're about to deliberately corrupt a
database, so only do this on a test database on a test server).

Run the script in Listing 7-11 to create a new FILESTREAM-enabled database with a
FILESTREAM column and two rows.

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs') LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_log.ldf')
GO

USE NorthPole
GO

286

Chapter 7: FILESTREAM Database Administration

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)
GO

INSERT INTO Items
 (ItemID, ItemNumber, ItemDescription, ItemImage)
VALUES (NEWID(), 'MS1001', 'Microsoft Mouse', 0x1),
 (NEWID(), 'MS1002', 'Microsoft Keyboard', 0x2)

Listing 7-11:	 Creating a FILESTREAM database with a FILESTREAM column and two rows.

Navigate to the FILESTREAM data container using Windows Explorer and you will see
the two FILESTREAM data files in the folder associated with the Items table. Go ahead
and delete one of those files.

Let's fire off a few queries to confirm that the database has indeed been corrupted.
Listing 7-12 reads data from the Items table.

SELECT
 itemNumber,
 ItemDescription
FROM Items
/*
itemnumber ItemDescription
-------------------- -------------------
MS1001 Microsoft Mouse
MS1002 Microsoft Keyboard
*/

Listing 7-12:	 Reading relational data from the corrupted Items table.

287

Chapter 7: FILESTREAM Database Administration

That worked… but we did not touch the FILESTREAM data in the query. Listing 7-13, on
the other hand, will try to read from the FILESTREAM columns.

SELECT
 itemnumber,
 itemImage
FROM Items
/*
itemnumber ItemImage
-------------------- ------------------------------
Msg 233, Level 20, State 0, Line 0
A transport-level error has occurred when receiving
results from the server. (provider: Shared Memory
Provider, error: 0 - No process is on the other
end of the pipe.)
*/

Listing 7-13:	 Attempting to read FILESTREAM data from the corrupted Items table.

There is a fatal error with Level 20. In SQL Server 2008 and R2 the connection will be
terminated when such an error occurs. However, in SQL Server 2012 this error does not
terminate the connection.

Note that the error occurs only if you try to access a FILESTREAM value that is having a
problem (in this case, missing from the FILESTREAM data container). Querying a valid
FILESTREAM value will work correctly, as shown in Listing 7-14.

SELECT
 itemNumber,
 DATALENGTH(ItemImage)
FROM items
WHERE itemNumber = 'MS1002'
/*
item number
-------------------- --------------------
MS1002 4
*/

Listing 7-14:	 Reading uncorrupted FILESTREAM data in a corrupted database.

288

Chapter 7: FILESTREAM Database Administration

Checking for database consistency

Consistency of the FILESTREAM data can be checked using DBCC CHECKDB for the entire
database, or DBCC CHECKTABLE to validate a single table. In Listing 7-15, we run DBCC
CHECKTABLE to scan the table that we just corrupted by deleting the FILESTREAM data
file using Windows Explorer.

DBCC CHECKTABLE('Items')

/*
DBCC results for 'sys.FILESTREAM_tombstone_2073058421'.
There are 0 rows in 1 pages for object
"sys.FILESTREAM_tombstone_2073058421".
DBCC results for 'Items'.
Msg 7904, Level 16, State 2, Line 1
Table error: Cannot find the FILESTREAM file
"00000015-0000005e-0004" for column ID 4 (column directory
ID 4d8cb114-f573-490e-adfa-e4583889b836) in object ID 2105058535,
index ID 0, partition ID 72057594038779904, page ID (1:157),
slot ID 0.
There are 2 rows in 1 pages for object "Items".
CHECKTABLE found 0 allocation errors and 1 consistency errors
in table 'Items' (object ID 2105058535).
repair_allow_data_loss is the minimum repair level for the
errors found by DBCC CHECKTABLE (NorthPole.dbo.Items).
DBCC execution completed. If DBCC printed error messages, contact
your system administrator.
*/

Listing 7-15:	 Scanning the corrupted table.

As expected, the DBCC CHECKTABLE command scanned the entire table and detected that
a FILESTREAM data file is missing from the FILESTREAM data container.

289

Chapter 7: FILESTREAM Database Administration

Fixing corrupted data

One of the key features offered by FILESTREAM is consistency between FILESTREAM
data and relational data. We just deleted a FILESTREAM data file directly (outside SQL
Server) and so lost the consistency of data. The only way to fix this is either by deleting
the row that contains the FILESTREAM data file (recommended), or by adding the lost file
back to the FILESTREAM data container.

If you do not want to lose the relational data, you could fix the corruption by copying
back the correct file directly into the FILESTREAM data container. This requires that you
have the ability to locate a backup copy somewhere, possibly by restoring from a backup.
SQL Server allows you to query the relational data even though the FILESTREAM data is
corrupted, which may help you to identify which data value is missing. Note that the file
name of the new file must be the same; the file name and location can be identified from
the DBCC error message.

If you cannot locate a copy of the missing or corrupt file, you can put a dummy file with
the expected file name into the FILESTREAM data folder, and this will "fix" the corruption
so that you do not have to delete the relational data (which may be hard to get back). For
example, if your table stores the avatar of users and you lost the image of one record due
to a mistake, you could put an anonymous image file into the FILESTREAM data folder.

To use a dummy file, locate an existing file or create a new file that is of the same type as
the missing file. Copy the dummy file to the FILESTREAM data container and rename it
to match the name of the missing file (as reported by DBCC CHECKDB). Having done so,
rerun DBCC CHECKDB or DBCC CHECKTABLE, and you will see that the corruption is fixed.

If you can tolerate some degree of data loss, then the alternative solution is to delete
the row from the table to make the data consistent; we can do this by running DBCC
CHECKDB with repair_allow_data_loss, which is about as scary as it sounds; we're
about to lose some data! In this case, it will delete the associated row(s) from the table and
restore the consistency of the data.

290

Chapter 7: FILESTREAM Database Administration

To see this working, go back to the FILESTREAM data folder and delete the file we just
created. Run DBCC CHECKTABLE again, and you will see that the error is reported again.
Run the script in Listing 7-16 to fix the corruption by deleting the records that have
corrupted FILESTREAM values. The first action the script performs is to take the
database into single user mode. The database needs to be in single user mode to perform
a repair operation.

ALTER DATABASE NorthPole SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

DBCC CHECKDB('NorthPole', repair_allow_data_loss)
/*
Msg 7904, Level 16, State 2, Line 2
Table error: Cannot find the FILESTREAM file "00000015-0000005e-0004"
for column ID 4 (column directory ID 4d8cb114-f573-490e-adfa-e4583889b836) in
object ID 2105058535, index ID 0, partition ID 72057594038779904, page ID (1:157),
slot ID 0.

The error has been repaired.
Msg 8945, Level 16, State 1, Line 2

Table error: Object ID 2105058535, index ID 2 will be rebuilt.
The error has been repaired.
*/

Listing 7-16:	 Fixing FILESTREAM corruption by deleting the affected rows.

If you run a query on the Items table, you will see that it now has only one row; the row
from which the FILESTREAM data was missing has been deleted as part of the repair
process. Again, keep in mind that this approach may or may not be acceptable, depending
upon the nature of your application and sensitivity of the data.

291

Chapter 7: FILESTREAM Database Administration

Corruption caused by orphaned files

Creating or copying unwanted files in the FILESTREAM data container can also cause
corruption in a database.

Let us see what happens when an unwanted file is present in the FILESTREAM data
container. Go to the FILESTREAM data container and create a new file, or copy an
existing file from another folder. For this demonstration, I copied the MicrosoftMouse.
jpg into the FILESTREAM data container's folder structure. Then, run DBCC CHECKDB or
DBCC CHECKTABLE and you should see an error message similar to the following:

Table error: The file "\12f4b92b-6c51-43a5-9a32-71d1b0de0646\MicrosoftMouse.jpg" in the

rowset directory ID 4443b7d5-904c-475d-bcc8-20bc0e09b887 is not a valid FILESTREAM file.

Note that SQL Server complains that there is a file present that is not a valid
FILESTREAM file. One could probably argue that this is because the file is not correctly
named. Files in the FILESTREAM data folder do not have extensions, and they are named
following a certain pattern. Go back to your FILESTREAM folder and rename the file so
that it follows the same naming pattern as the other files in the FILESTREAM folder, and
then run DBCC CHECKTABLE again.

Table error:	 The orphaned file "0000001b-0000015c-0005" was found in the FILESTREAM directory

ID 12f4b92b-6c51-43a5-9a32-71d1b0de0646 for object ID 21575115, index ID 0, partition ID

72057594039042048, column ID 4.

Note that the error is different now. This time, SQL Server detected that there is an
orphan file in the FILESTREAM directory. Let's see if DBCC CHECKDB can fix this by
deleting the orphaned file; rerun DBCC CHECKDB with repair_allow_data_loss
(Listing 7-16).

Table error: The orphaned file "0000001b-0000015c-0005" was found in the FILESTREAM directory

ID 12f4b92b-6c51-43a5-9a32-71d1b0de0646 for object ID 21575115, index ID 0, partition ID

72057594039042048, column ID 4.

292

Chapter 7: FILESTREAM Database Administration

As you can see, SQL Server cannot fix an inconsistency error of this type. If it finds
a foreign file in the FILESTREAM data container, it will return an error, but
DBCC CHECKTABLE or DBCC CHECKDB will not remove the unwanted file. You must
remove it yourself to fix the corruption.

Corruption can leak into your backup files

Note that, if you take a backup of the database, the backup will also include the orphaned file. If you

subsequently restore the backup, the new database will be corrupted as well.

Before moving on, delete the orphaned file from the FILESTREAM data container,
then run DBCC CHECKDB again, to make sure that the database is no longer in a
corrupted state.

Corruption caused by deleting the garbage files
manually

As discussed earlier in the Garbage files and recovery models section, there is sometimes a
delay before garbage files are deleted. If you lose patience and delete garbage files yourself,
you may create a problem for the garbage collector, as it will try to remove files that no
longer exist.

If you have been following through with the example over the previous sections, the
Items table in NorthPole database has only one record. Go to the FILESTREAM data
container and note down the name of the file. Next, run the script in Listing 7-17 to
update the FILESTREAM data value. The update operation will generate a new file with
the modified value and the old file will become garbage.

293

Chapter 7: FILESTREAM Database Administration

UPDATE TOP (1) Items SET
 ItemImage = CAST(REPLICATE('A', 2048) AS VARBINARY(MAX))

Listing 7-17:	 Updating a FILESTREAM data value to create a garbage file.

After the update, you will see that there are two files in the FILESTREAM data container.
A new file has been generated with the modified value, and the previous file (whose name
you noted) is now garbage.

My tests show that deleting this garbage file manually, without waiting for the garbage
collector, does not corrupt the database in present versions of SQL Server. After deleting
the garbage files, I ran DBCC CHECKDB and no error was reported. This was surprising to
me, because the garbage files are tracked internally through the FILESTREAM tombstone
table and I would expect SQL Server to report an error if one goes missing.

As has been stressed several times already, it is not a good idea to touch the FILESTREAM
data container directly. All access to the FILESTREAM data should be done through SQL
Server – either using T-SQL or through the Win32 API calls. Do not ever attempt to clean
FILESTREAM garbage by yourself, unless there is an emergency where you are running
out of storage space and you badly need some of those garbage files to be removed (and,
of course, you fully understand the risks of touching FILESTREAM data directly).

Querying FILESTREAM Databases

SQL Server has a number of FILESTREAM-related system views that you can use to query
additional information about the FILESTREAM storage and activities. They are listed in
Chapter 9: Investigating FILESTREAM Databases, along with coverage of a few new system
wait types to deal with the various FILESTREAM-related operations and some of the
common FILESTREAM metadata queries that you might find very helpful while working
with FILESTREAM-enabled databases.

294

Chapter 7: FILESTREAM Database Administration

FILESTREAM Data and Space Management

The FILESTREAM feature enables the storage of large BLOB values in the database,
and one of the challenges that database administrators will face is space management.
Moving a copy of the production database to a secondary location or to the development
environment will be a real challenge in many cases, so it is very important to plan
carefully when you decide to go with a FILESTREAM implementation.

FILESTREAM database and backups

As we will discuss in Chapter 8: Back Up and Restore for FILESTREAM Databases, the backup of a

FILESTREAM database will also include the FILESTREAM data, so large backup sizes / long backup

times are also a potential issue.

If the expected workload and use cases are known in advance, it will be easier to
decide the number of FILESTREAM filegroups needed, as well as to identify any data
partitioning requirements for handling storage and retrieval. However, there may be
many cases where this information is not known in advance or the actual workload and
usage scenarios may overshoot all the estimations made at design time.

These scenarios may lead to the requirement to move FILESTREAM data partially or fully
to new disk volumes with the minimum possible downtime. We'll examine a few options
that will allow us to do this.

295

Chapter 7: FILESTREAM Database Administration

Changing the FILESTREAM filegroup location

In this example, let's imagine that our database started small, and we expected the
FILESTREAM data to grow to 100 GB in three years. Therefore, we put the FILESTREAM
data file on a 148 GB disk volume. After a year, it's clear that the data is growing faster
than expected and we have already used over 120 GB on the disk volume and need to
move the FILESTREAM data to a larger disk.

Run the T-SQL code provided in Listing 7-18 to rebuild our sample database.

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_log.ldf')
GO

Listing 7-18:	 Creating the sample database.

This creates a FILESTREAM database with a single FILESTREAM filegroup and sets the
FILESTREAM data container to C:\ArtOfFS\Demos\Chapter7\NorthPole_fs. The
next step is to create a FILESTREAM-enabled table (Listing 7-19).

296

Chapter 7: FILESTREAM Database Administration

USE NorthPole
GO
CREATE TABLE [dbo].[Items](
 [ItemID] [int] IDENTITY(1,1) NOT NULL,
 [ItemGuid] [uniqueidentifier] ROWGUIDCOL NOT NULL UNIQUE,
 [ItemNumber] [varchar](20) NULL,
 [ItemDescription] [varchar](50) NULL,
 [ItemImage] [varbinary](max) FILESTREAM NULL,
 CONSTRAINT PKEY_Items PRIMARY KEY CLUSTERED
 ([ItemID] ASC)
)

Listing 7-19:	 Creating a FILESTREAM table.

This table is a bit different from the previous examples; this time, the Items table has an
IDENTITY column called ItemID, which has a PRIMARY KEY defined on it. The next step
is to insert a few rows into the table (Listing 7-20).

INSERT INTO Items(ItemGuid, ItemNumber, ItemDescription, ItemImage) VALUES
(NEWID(), 'ITM001', 'Item 1', 0x),
(NEWID(), 'ITM001', 'Item 1', 0x)

Listing 7-20:	 Populating the table with zero-length files.

In this simple example, there will only be two files in the FILESTREAM data container.
However, imagine that the database has grown very large and the folder contains a large
number of FILESTREAM data files, necessitating the move of the FILESTREAM filegroup
to a new disk volume. For the purpose of keeping this example simple, let's assume that
the new location is C:\ArtOfFS\Demos\Chapter7\NorthPole_fs2. Of course, in
reality, the new location would be on a separate disk volume.

The approach we will take here is to add a new FILESTREAM filegroup at this new
location, and rebuild the clustered index on the FILESTREAM table, which will move the
FILESTREAM data to this new location. Listing 7-21 adds a new FILESTREAM filegroup
into the NorthPole database.

297

Chapter 7: FILESTREAM Database Administration

ALTER DATABASE NorthPole
ADD FILEGROUP NorthPole_fs2
CONTAINS FILESTREAM

Listing 7-21:	 Adding a new FILESTREAM filegroup.

Next, associate the filegroup with the location to which we want to move the
FILESTREAM data (Listing 7-22).

ALTER DATABASE NorthPole
ADD FILE
(
 NAME= NorthPole_fs2,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs2'
)
TO FILEGROUP NorthPole_fs2

Listing 7-22:	 Adding a file to the newly created FILESTREAM filegroup.

The next step is to drop the clustered index (which is also the primary key of the table)
using the script in Listing 7-23. If there is currently no clustered index on the table, then
move on to the next step, which is creating a clustered index.

ALTER TABLE [dbo].[Items] DROP CONSTRAINT [PKEY_Items]

Listing 7-23:	 Dropping the clustered index on the Items table.

Now, in Listing 7-24, we can re-create the clustered index, specifying the location of the
new FILESTREAM filegroup. SQL Server will move the FILESTREAM data to the new
location while the clustered index is being built.

ALTER TABLE [dbo].[Items]
ADD CONSTRAINT [PKEY_Items]
PRIMARY KEY CLUSTERED ([ItemID] ASC)
FILESTREAM_ON [NorthPole_fs2]

Listing 7-24:	 Rebuilding the clustered index to move the FILESTREAM data.

298

Chapter 7: FILESTREAM Database Administration

Notice the usage of the FILESTREAM_ON clause in Listing 7-24. By specifying the
FILESTREAM_ON clause, you instruct SQL Server to move the FILESTREAM data to the
specified filegroup.

Note that this approach requires attention to an important detail. If, for some reason, the
clustered index is rebuilt again, the FILESTREAM_ON clause must be used again, to avoid
the FILESTREAM data container from moving back to the default filegroup.

An alternative to moving the data by using the FILESTREAM_ON clause to the ALTER
TABLE command, when we add the new clustered index, is to first specify the new target
FILESTREAM filegroup as the default filegroup for the database, and then simply add the
clustered index, as shown in Listing 7-25.

ALTER DATABASE NorthPole MODIFY FILEGROUP NorthPole_fs2 DEFAULT
GO
ALTER TABLE [dbo].[Items]
ADD CONSTRAINT [PKEY_Items]
PRIMARY KEY CLUSTERED ([ItemID] ASC)

Listing 7-25:	 Setting the default FILESTREAM filegroup to move the data.

Whichever technique you use, once you have rebuilt the clustered index, look in the new
FILESTREAM data location and you will see two FILESTREAM data files. Now look in the
original FILESTREAM location and will see two files there, too. The reason for this is that
the garbage collector has not yet run; the next time it does, those files will be deleted.

To verify that new FILESTREAM data is going to the new location, run the code in Listing
7-26, which adds two more rows to the FILESTREAM table.

INSERT INTO Items(itemguid, itemnumber, itemdescription, ItemImage) VALUES
(NEWID(), 'ITM001', 'Item 1', 0x),
(NEWID(), 'ITM001', 'Item 1', 0x)

Listing 7-26:	 Adding two more rows to the FILESTREAM table.

299

Chapter 7: FILESTREAM Database Administration

The new FILESTREAM data location contains two new files, which are not present in
the original location. If you no longer need the original filegroup, you can remove it, by
first removing the FILESTREAM data container and then the filegroup itself. Listing 7-27
shows how.

ALTER DATABASE NorthPole
REMOVE FILE NorthPole_fs ;

ALTER DATABASE NorthPole
REMOVE FILEGROUP NorthPole_fs ;

Listing 7-27:	 Removing the FILESTREAM data container and filegroup.

Note that the demonstrated behavior has an important consequence: because only
one FILESTREAM filegroup can be marked as the default for the database, if you are
intentionally spreading the FILESTREAM data over multiple filegroups (as discussed
next), then creating or recreating a clustered index on a table with FILESTREAM
data stored in a non-default filegroup will cause the data to be moved, which may
be undesired.

Adding a new partition to share the FILESTREAM
storage load

We can partition a FILESTREAM table so as to distribute the FILESTREAM storage to
multiple disk volumes. By designing the table in this way, it is quite easy to add a new
partition to a FILESTREAM table, in order to add more storage space, or balance the I/O
load across multiple storage systems.

In this example, we'll create a partitioned FILESTREAM table and then add a new
partition to move some of the FILESTREAM data to a new filegroup. First, run the script
in Listing 7-28 to re-create the sample database.

300

Chapter 7: FILESTREAM Database Administration

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole.mdf'),
FILEGROUP NorthPole2(
 NAME = NorthPole2,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole2.ndf'),
FILEGROUP NorthPole_fs1 CONTAINS FILESTREAM DEFAULT(
 NAME = NorthPole_fs1,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs1'),
FILEGROUP NorthPole_fs2 CONTAINS FILESTREAM(
 NAME = NorthPole_fs2,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs2')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_log.ldf')
GO

Listing 7-28:	 Creating a FILESTREAM database with multiple FILESTREAM filegroups.

This database contains a primary filegroup (NorthPole) containing the primary data
file, a filegroup called NorthPole2, containing a secondary data file, two FILESTREAM
filegroups, NorthPole_fs1 and NorthPole_fs2, and the log file. Purely for conven-
ience, all of these are stored on the same disk volume but, in a real-world scenario, you'd
probably put all these files on different disk volumes.

Next, we're going to create two partitions to store the FILESTREAM data. Listing 7-29
shows the partition function and partition schemes to do this, assuming we're going to
partition the table by the ID column. Take a look at the code and then we'll discuss how
it works.

301

Chapter 7: FILESTREAM Database Administration

USE NorthPole
GO

CREATE PARTITION FUNCTION NPPartFN (INT) AS
RANGE RIGHT FOR VALUES (4)

CREATE PARTITION SCHEME NPPartDBSch AS
PARTITION NPPartFN TO([PRIMARY],[NorthPole2])
GO

CREATE PARTITION SCHEME NPPartFSSch AS
PARTITION NPPartFN TO(NorthPole_fs1, NorthPole_fs2)
GO

Listing 7-29:	 Creating a partition function and scheme.

First, this code creates a partition function, NPPartFN, which will split data across two
filegroups; relational data will be split across the primary and secondary data files, and the
FILESTREAM data will be divided across the two FILESTREAM filegroups.

We will associate this function with the ItemID column of the Items table, such that
rows with ItemID less than 4 will go to the first filegroup (PRIMARY for relational data
and NorthPole_fs1 for FILESTREAM data), and those with 4 and above will go to the
second filegroup (NorthPole2 for relational data and NorthPole_fs2 for FILESTREAM
data). Of course, these numbers are very small and are used only for demonstration
purposes. In the real world, you could use a larger value, or you might want to partition
based on date, or some other value.

The second part of the code creates two partition schemes; one for the relational data and
the other for the FILESTREAM data. Note that the partition switching of FILESTREAM
data works only when the RIGHT operator is used in the partition function. It does not
work with LEFT, which is a confirmed bug in the current versions of SQL Server.

The next step is to create the Items table, exploiting our new partition scheme, as shown
in Listing 7-30.

302

Chapter 7: FILESTREAM Database Administration

USE NorthPole
GO
CREATE TABLE [dbo].[Items](
 [ItemID] [int] IDENTITY(1,1) NOT NULL,
 [ItemGuid] [uniqueidentifier] ROWGUIDCOL
 NOT NULL UNIQUE ON [PRIMARY],
 [ItemNumber] [varchar](20) NULL,
 [ItemDescription] [varchar](50) NULL,
 [ItemImage] [varbinary](max) FILESTREAM NULL
) ON NPPartDBSch(ItemID)
FILESTREAM_ON NPPartFSSch

Listing 7-30:	 Creating the Items table on the partition scheme.

Listing 7-31 inserts six rows into the Items table. Based on our partition rules, the first
three rows should go to the first filegroup and the rest should go to the second filegroup.

INSERT INTO Items(itemguid, itemnumber, itemdescription, ItemImage)
SELECT NEWID(), 'ITM001', 'Item 1', 0x1
UNION ALL
SELECT NEWID(), 'ITM002', 'Item 2', 0x2
UNION ALL
SELECT NEWID(), 'ITM003', 'Item 3', 0x3
UNION ALL
SELECT NEWID(), 'ITM004', 'Item 4', 0x4
UNION ALL
SELECT NEWID(), 'ITM005', 'Item 5', 0x5
UNION ALL
SELECT NEWID(), 'ITM006', 'Item 6', 0x6

Listing 7-31:	 Creating six new rows in the Items table.

Go to the FILESTREAM data container and verify that you see three files in the location
associated with the first filegroup and another three files in the location associated with
the second FILESTREAM filegroup.

303

Chapter 7: FILESTREAM Database Administration

Now, let's assume that this database has been running for years, and we are about to
run out of space on the disk volume holding the filegroup NorthPole_fs2. To mimic
this scenario, we'll simply add three more rows into the sample database so that the first
filegroup still has three FILESTREAM data files and the second filegroup is "overloaded"
with six FILESTREAM data files (Listing 7-32).

INSERT INTO Items(itemguid, itemnumber, itemdescription, ItemImage)
SELECT NEWID(), 'ITM007', 'Item 7', 0x7
UNION ALL
SELECT NEWID(), 'ITM008', 'Item 8', 0x8
UNION ALL
SELECT NEWID(), 'ITM009', 'Item 9', 0x9

Listing 7-32:	 Creating three more rows in the Items table.

What we want to do is create a new FILESTREAM filegroup (on a separate disk), then
create a new partition scheme that makes sure all subsequent data will be stored in this
new filegroup, and finally modify our partition function so that the three rows created in
Listing 7-32 are moved to the new partition scheme.

The first step is to add the new filegroups. It's not technically required to add a new data
filegroup for every new FILESTREAM filegroup. This practice is used here only to make
the code examples clear to follow. Thus, we will create two new filegroups, one for the
relational data and the other for the FILESTREAM data (Listing 7-33).

ALTER DATABASE NorthPole
ADD FILEGROUP NorthPole_fs3 CONTAINS FILESTREAM

ALTER database NorthPole
ADD FILE
(
 NAME = 'NorthPole_fs3',
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole_fs3'
)
TO FILEGROUP NorthPole_fs3

304

Chapter 7: FILESTREAM Database Administration

ALTER DATABASE NorthPole
ADD FILEGROUP NorthPole3

ALTER database NorthPole
ADD FILE
(
 NAME = 'NorthPole3',
 FILENAME = 'C:\ArtOfFS\Demos\Chapter7\NorthPole3.mdf'
)
TO FILEGROUP NorthPole3

Listing 7-33:	 Adding two new filegroups to the sample database.

Now we'll add the newly created filegroups into the partition scheme and mark them as
the NEXT filegroup to be used (Listing 7-34).

ALTER PARTITION SCHEME NPPartFSSch
NEXT USED NorthPole_fs3

ALTER PARTITION SCHEME NPPartDBSch
NEXT USED NorthPole3

Listing 7-34:	 Adding the new filegroups into the partition scheme.

We can now reconfigure the partition function to add another split at 7; this will move
all the rows with ItemID 7 out of the NorthPole2 and NorthPole_fs2 filegroups and
into the NorthPole3 and NorthPole_fs3 filegroups.

ALTER PARTITION FUNCTION NPPartFN()
SPLIT RANGE (7);

Listing 7-35:	 Modifying the partition function.

305

Chapter 7: FILESTREAM Database Administration

Take a look in the FILESTREAM data container. You will see that three FILESTREAM data
files have been added to the new location. The FILESTREAM data container belonging
to the second filegroup still contains six files, but three of them are garbage and will be
removed when the garbage collector runs next time.

Throughout this example, we've partitioned the relational data according to the same
scheme as the FILESTREAM data. However, it is also possible to partition only the
FILESTREAM data, and leave all the relational data in a single database file. Listing 7-29
can be modified to use the PRIMARY filegroup twice in the NPPartDBSch partition
scheme, as shown in Listing 7-36.

USE NorthPole
GO

CREATE PARTITION FUNCTION NPPartFN (INT) AS
RANGE RIGHT FOR VALUES (4)

CREATE PARTITION SCHEME NPPartDBSch AS
PARTITION NPPartFN TO([PRIMARY],[PRIMARY])
GO

CREATE PARTITION SCHEME NPPartFSSch AS
PARTITION NPPartFN TO(NorthPole_fs1, NorthPole_fs2)
GO

Listing 7-36:	 Creating a partition function and scheme to partition FILESTREAM data

but not relational data.

Listings 7-33 and 7-34 can be modified similarly. In Listing 7-33, you would not create
the filegroup NorthPole3 or the associated file. In Listing 7-34, you would not use the
second ALTER PARTITION statement.

306

Chapter 7: FILESTREAM Database Administration

Migrating FILESTREAM Data

The recommended way to move or copy large databases from one location to another
is to restore a full backup (see Chapter 8). However, in cases where restoring backups is
not allowed, such as in a shared hosting location, or when only selected objects need to
be restored, we can resort to scripting of the schema and data to transport SQL Server
objects from one location to another. It is possible to script tables with FILESTREAM
data but it is only recommended in cases where the database size is relatively small, and
scripting data of FILESTREAM-enabled databases is recommended only if the BLOB
values are small.

SSMS scripting

The scripting functionality offered by SSMS allows us to create INSERT scripts that can
be executed on another location to re-create the FILESTREAM data. You can do this
by setting the export option Type of data to script to Schema and data or Data only, as
shown in Figure 7-2.

Figure 7-2:	 Selecting the types of data to script.

307

Chapter 7: FILESTREAM Database Administration

The scripting process does not require any FILESTREAM-specific changes; it is the same
as the process for a non-FILESTREAM database. SSMS generates INSERT statements
to populate the target database with the same values as the source table, including the
FILESTREAM columns. FILESTREAM columns are exported as a hex string, as shown in
Listing 7-37.

INSERT [dbo].[Items] (
 [ItemID],
 [ItemNumber],
 [ItemDescription],
 [ItemImage])
VALUES (
 N'f326ed65-5131-4ef7-891a-89fad516b856',
 N'MS1001', N'Microsoft Mouse',
 0xFFD8FFE000104A46494600010100000100010000FFDB004
 300090607080706090807080A0A090B0D160F0D0C0C0D1B14
 151016201D2222201D1F1F2428342C242631271F1F2D3D2D3
 35373A3A3A232B3F443F384334393A37FFDB0043010A0A0A0
 ...
 3737373737373737373737FFC00011080067007A030122000)

Listing 7-37:	 INSERT statement for a FILESTREAM column.

The Scripting Wizard allows us to generate scripts to be deployed on a different version
of SQL Server. This is one of the areas where the scripting functionality adds value over
regular backups, as we cannot, for example, restore a SQL Server 2008 R2 backup on
SQL Server 2008.

We select the target database in the Advanced Scripting Options screen (Figure 7-3).

308

Chapter 7: FILESTREAM Database Administration

Figure 7-3:	 Selecting the target SQL Server version for scripting.

We can generate scripts of a SQL Server 2008 FILESTREAM database and deploy to a SQL
Server 2005 instance. The FILESTREAM columns will be deployed as VARBINARY(MAX)
columns on the target database. However, we cannot script a FILESTREAM column for
deployment to SQL Server 2000.

It appears that SSMS cannot script FILESTREAM values larger than 2 GB. However, this is
unlikely to be a problem because, in the real world, I would not expect anyone to attempt
to generate scripts for BLOB values larger than about 100 MB.

309

Chapter 7: FILESTREAM Database Administration

The Database Publishing Wizard

Using the SQL Server Database Publishing wizard, we can deploy database scripts and
data to another local or remote server. The Database Publishing Wizard (versions 1.3
and 1.4) is integrated with Visual Studio, and allows us to publish directly from the
Visual Studio IDE (Figure 7-4).

Figure 7.4:	 The Database Publishing Wizard.

The functionality offered by the Database Publishing Wizard is very much similar to the
Database Scripting Wizard we examined earlier.

310

Chapter 7: FILESTREAM Database Administration

Database Publishing Wizard

The current version of Database Publishing Wizard can be downloaded from: http://brurl.com/fs23.

The Database Publishing Wizard allows us to publish a SQL Server 2008 database to a
SQL Server 2008 or 2005 database. When publishing from SQL Server 2008 to 2005,
FILESTREAM columns will be created as VARBINARY(MAX) columns. We cannot publish
a SQL Server 2008 database with FILESTREAM columns for deployment to a SQL Server
2000 instance.

Summary

This chapter walked through quite an array of database administration topics that are
relevant to people managing FILESTREAM databases. Here's a brief summary of what
we covered.

•	 How to detach and attach FILESTREAM databases and, in the process, move the
FILESTREAM files to a new location.

•	 The behavior of FILESTREAM data under the transaction isolation levels.

•	 How the database recovery model of the database affects the way the garbage collector
steps in and removes the garbage files. We also looked at the FILESTREAM tombstone
table, which keeps track of the garbage files; the garbage collector uses this table to
identify the files to be removed.

•	 Why it is not recommended that you touch the FILESTREAM data files on the NTFS
folder directly, and why all access to the FILESTREAM data should be made through
SQL Server only. Deleting files from the FILESTREAM data container or creating new
files in the FILESTREAM data container can cause corruption in the database.

http://brurl.com/fs23

311

Chapter 7: FILESTREAM Database Administration

•	 How to detect corruption of FILESTREAM data using DBCC CHECKDB or DBCC
CHECKTABLE, and how to fix corruption using the repair_allow_data_loss flag,
although repairs involve deleting the relational data that was stored in the same row as
the corrupted FILESTREAM data.

•	 Various methods for FILESTREAM database space management, including how to
move FILESTREAM storage location of a table that is not partitioned, and how to add
a new partition to a partitioned FILESTREAM table to distribute the FILESTREAM
storage load.

•	 How to script FILESTREAM tables and data using the built-in SSMS Scripting Wizard
as well as the Database Publishing Wizard.

312

Chapter 8: Backup and Restore for
FILESTREAM Databases

One of the benefits of the FILESTREAM feature over the traditional methods of storing
the BLOB data in the file system is that a FILESTREAM database backup contains both
the relational data and the BLOB data stored in the FILESTREAM data container. This
removes the administrative overhead of having to maintain separate backups of the
disk files, which is necessary when using traditional BLOB storage methods. Likewise,
when the full backup of a FILESTREAM database is restored to another location, the
FILESTREAM data is also restored, and is available along with the relational data.

The backup process for a FILESTREAM-enabled database is the same as that for a
non-FILESTREAM database; the BACKUP statement is the same, regardless of whether
or not the database being processed has the FILESTREAM feature enabled. The restore
operation, however, is a little different for a FILESTREAM-enabled database since we need
to specify the path where the FILESTREAM filegroups should be restored.

In this chapter, we will examine the points below.

•	 How to perform full, differential, and log backups for FILESTREAM databases; this is
no different than for any standard database.

•	 How to restore a FILESTREAM database from a full backup, and how to perform a
point-in-time restore.

•	 File backups and piecemeal restores to bring a database back online with only the
relational data.

•	 Data and backup compression for FILESTREAM databases.

•	 The issue of garbage files being included in FILESTREAM database backups.

313

Chapter 8: Backup and Restore for FILESTREAM Databases

Creating and Populating the Sample Database

As usual, our preparatory step for the examples is to re-create our NorthPole database,
the Items table, with the FILESTREAM column, and populate it with some fresh data.
We've performed this step many times now so, without further ado, the script is in
Listing 8-1. The only additional point to note is that, immediately after creating the
database, we ALTER it to stipulate use of the FULL recovery model because we wish
to perform transaction log backups for this database. It is not possible to perform
transaction log backups for a database operating in SIMPLE recovery model.

The script below starts with dropping the database if it already exists. In case you intend
to repeatedly execute this script and subsequent exercises provided below, as part of your
tests/experiment, you might want to consider dropping the database from SSMS. When
you drop a database from SSMS, it will also remove the backup history from the MSDB
database, resulting in a cleaner environment for the new database.

USE master
GO

-- If the database already exists, drop and re-create it
IF DB_ID('NorthPole') IS NOT NULL BEGIN
 DROP DATABASE NorthPole
END
GO

-- Create a FILESTREAM-enabled database
CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter8\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter8\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter8\NorthPole_log.ldf')
GO

314

Chapter 8: Backup and Restore for FILESTREAM Databases

-- Set the database recovery model to full
ALTER DATABASE NorthPole SET RECOVERY FULL
GO

-- Create a table with a FILESTREAM column
USE NorthPole
GO

-- Create the "Items" table
CREATE TABLE [dbo].[Items](
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,
 [ItemNumber] VARCHAR(20),
 [ItemDescription] VARCHAR(50),
 [ItemImage] VARBINARY(MAX) FILESTREAM NULL,
 [CreatedDate] DATETIME DEFAULT GETDATE()
)
GO

-- Insert the data into the table
INSERT INTO Items (ItemID, ItemNumber, ItemDescription, ItemImage)
SELECT
 NEWID(), 'MS1001', 'Microsoft Mouse',
 CAST(bulkcolumn AS VARBINARY(MAX))
FROM OPENROWSET(
 BULK 'C:\ArtOfFS\Demos\Images\MicrosoftMouse.jpg', SINGLE_BLOB
) AS x

Listing 8-1:	 T-SQL script to create the sample database for the examples in this chapter.

Backing up FILESTREAM Databases

In this section we'll consider the three most common types of database backup.

•	 Full database backup – Backs up all the data and objects in all the data files associated
with a database.

•	 Differential database backup – Backs up any data and objects in all the data files for a
given database that have changed since the last full backup.

315

Chapter 8: Backup and Restore for FILESTREAM Databases

•	 Transaction log backup – Copies into a backup file all the log records inserted into the
transaction log file since the last transaction log backup.

No FILESTREAM-specific commands or keywords are required to create any of these
backup types.

Full backups

A full database backup is the cornerstone of most SQL Server Backup and recovery
schemes, and a full backup of a FILESTREAM database always includes the FILESTREAM
data, as well as all the relational data.

Listing 8-2 takes a full backup of the NorthPole database and stores the backup file on
the same drive as the database files. Of course, this is purely for convenience in this demo;
in reality, you would always back up to a separate disk drive. Feel free to alter the path
as required.

-- Take a full backup
USE master
GO
BACKUP DATABASE NorthPole
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole.bak'
GO

Listing 8-2:	 T-SQL code to take a full backup of a FILESTREAM-enabled database.

Differential backups

A differential backup of a SQL Server database contains all changes since the previous
full backup. Differential backups are especially useful when the database is large, and
FILESTREAM databases are obviously expected to be large, since a full database backup

316

Chapter 8: Backup and Restore for FILESTREAM Databases

process for such databases will be a time- and resource-consuming process. A typical
backup scheme might consist of weekly full backups interspersed with nightly differential
backups (plus transaction log backups, as required).

Again, the behavior of differential backups is the same with FILESTREAM as with
non-FILESTREAM databases. Listing 8-3 inserts a new row into the NorthPole database
and then captures a differential backup.

-- Insert another row into the table
USE NorthPole
GO
INSERT INTO Items (ItemID, ItemNumber, ItemDescription, ItemImage)
SELECT
 NEWID(), 'MS1002', 'Microsoft Mouse 2',
 CAST(bulkcolumn AS VARBINARY(MAX))
FROM OPENROWSET(
 BULK 'C:\ArtOfFS\Demos\Images\MicrosoftMouse.jpg', SINGLE_BLOB
) AS x

-- Take a differential backup
USE master
GO
BACKUP DATABASE NorthPole
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole_Diff.bak'
WITH DIFFERENTIAL
GO

Listing 8-3:	 Capturing a differential database backup.

Transaction log backups

A transaction log backup captures every record in the log that has been generated since
the last log backup. We can combine these log backups with full (and any differential)
backups to restore a database to any point in time before the last log backup was taken,
assuming we have an unbroken chain of log files, taken after the relevant full backup.

317

Chapter 8: Backup and Restore for FILESTREAM Databases

Once again, no FILESTREAM-specific additional steps or commands are needed to take
transaction log backups of FILESTREAM databases. Listing 8-3 inserts a third row into the
NorthPole database, then captures a transaction log backup.

-- Insert another row into the table
USE NorthPole
GO
INSERT INTO Items (ItemID, ItemNumber, ItemDescription, ItemImage)
SELECT
 NEWID(), 'MS1003', 'Microsoft Mouse 3',
 CAST(bulkcolumn AS VARBINARY(MAX))
FROM OPENROWSET(
 BULK 'C:\ArtOfFS\Demos\Images\MicrosoftMouse.jpg', SINGLE_BLOB
) AS x

-- Take a log backup
USE master
GO

BACKUP LOG NorthPole
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole_Log.trn'
GO

Listing 8-4:	 Capturing a log backup.

Finally, to set the scene for our various restore examples, we're going to add a fourth row
to the table, note the current time (we'll need this later), and then simulate a disaster in
the form of someone accidentally deleting the contents of the Items table. Finally, we
take a second log backup.

-- Insert another row into the table
USE NorthPole
GO
INSERT INTO Items (ItemID, ItemNumber, ItemDescription, ItemImage)
SELECT
 NEWID(), 'MS1004', 'Microsoft Mouse 4',
 CAST(bulkcolumn AS VARBINARY(MAX))

318

Chapter 8: Backup and Restore for FILESTREAM Databases

FROM OPENROWSET(
 BULK 'C:\ArtOfFS\Demos\Images\MicrosoftMouse.jpg', SINGLE_BLOB
) AS x

SELECT GETDATE() AS Date
/*
Date

2012-03-08 14:22:28.040
*/

-- Oops!No WHERE clause?!
BEGIN TRAN
DELETE FROM Items
COMMIT TRAN

-- Take a second log backup
USE master
GO

BACKUP LOG NorthPole
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole_Log2.trn'
GO

Listing 8-5:	 Fourth insert, accidental deletion from Items table, second log backup.

Restoring FILESTREAM Databases

Restoring a FILESTREAM database may require a little more attention than the backup
process because, while restoring, we need to specify the location of the FILESTREAM
filegroups in addition to the data and log files, if restoring to a new database. When
performing an in-place restore, no additional parameters are required. In addition,
FILESTREAM must be enabled on the SQL Server instance to which the database is
being restored.

319

Chapter 8: Backup and Restore for FILESTREAM Databases

Restoring from a full backup

The simplest RESTORE operation involves just a single full backup file. This type of
restore is relatively common when, for example, refreshing a development environment
with the latest version of a production database.

Currently, following our "accidental" deletion, the Items table is empty. Listing 8-5
restores our full database backup over the top of the existing NorthPole database and
recovers the database.

USE [master]
GO

RESTORE DATABASE NorthPole FROM
DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole.bak'
WITH REPLACE, RECOVERY
GO

Listing 8-6:	 Restoring a full database backup over the existing database.

We have restored our NorthPole database, but so far only recovered one of the missing
rows in our Items table. Fortunately, with the other backup files we've captured, we can
repeat the restore operation and this time roll the database forward to recover the other
three missing rows.

Point-in-time restore

Our current NorthPole database contains an Items table with just a single row of data,
and our goal here is to restore the database to the point where it contained all four rows
of data.

320

Chapter 8: Backup and Restore for FILESTREAM Databases

Our complete backup scheme for the NorthPole database consists of a full backup, a
differential backup and two transaction log backups. With these backup files, we could
perform another restore operation to completely restore the NorthPole database;
in other words, we could restore each backup file in sequence, rolling the database
forward to the state it existed in at the end of the second log backup, and then recover
the database. In fact, in this very simple case, we can perform a complete restore simply
using the full backup and the two transaction log backups; remember that a log backup
captures all contents in the log file since the last log backup and so, in this case, the first
transaction log backup will contain the log records for both the rows added after the full
backup, and the second log backup will contain the details of the final insert. In a more
realistic backup scheme, there would likely have been transaction log backups taken at
regular intervals in the time between the full backup and the differential backup. In such
a case, the differential backup would have allowed us to avoid having to restore those
log backups, and our restore operation would instead have used just the full backup, the
differential backup, and any subsequent log backups.

In any event, the problem we have here is that a complete restore would return the
database to the state where the contents of the Items table were deleted since, when we
restore the second log backup, it would roll forward, not only the fourth insert, but also
the transaction that deleted the contents of Items. What we want to do instead, to get
all the contents of our Items table back, is restore to a specific point in time within that
second log backup; namely, the time that we recorded after the fourth insert, but before
the accidental delete.

Fortunately, SQL Server supports point-in-time recovery of FILESTREAM databases;
when you restore a FILESTREAM-enabled database from a certain point in time, the
FILESTREAM data will be consistent with the relational data in the restored database.

Let's look at an example that performs a point-in-time restore of a FILESTREAM
database. This time, instead of restoring over the top of the existing NorthPole
database, we're going to restore to a new database, called NothPole2. At the end of this
operation what we should have is a NorthPole database, with one row in the Items
table, and a NorthPole2 database with all four rows back in the Items table.

321

Chapter 8: Backup and Restore for FILESTREAM Databases

The first step is to restore the full backup to create the NorthPole2 database, as shown
in Listing 8-7. Notice the use of the NORECOVERY option; this instructs SQL Server to
leave the database in a restoring state, ready to receive more backup files.

-- Restore the full backup
RESTORE DATABASE NorthPole2
 FROM DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole.bak'
 WITH NORECOVERY,
 MOVE 'NorthPole' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole2.mdf',
 MOVE 'NorthPole_log' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole2_log.ldf',
 MOVE 'NorthPole_fs' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole2_fs',
GO

Listing 8-7:	 Restoring a full backup.

The code uses the MOVE option three times, to specify the location of the data file,
log file, and FILESTREAM data container, respectively. Note that the leaf-level folder
(NorthPole2_fs in this example) should not exist already, but the containing folder
(C:\ArtOfFS\Demos\Chapter8) must exist! SQL Server reserves the "exclusive" rights
to create and configure NorthPole2_fs folder as part of the restore operation.

The next step is to completely restore the first transaction log backup, again leaving the
NorthPole2 database in a restoring state.

RESTORE LOG NorthPole2
FROM DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole_log.trn'
WITH NORECOVERY

Listing 8-8:	 Restoring the transaction log backup.

The final step is the interesting one; we apply the second log backup, but stop the restore
at the point just before the data was accidentally deleted, and then recover the database.
If you are following this example on your own system, insert the date and time from
Listing 8-9.

322

Chapter 8: Backup and Restore for FILESTREAM Databases

RESTORE LOG NorthPole2
FROM DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole_log2.trn'
WITH RECOVERY,
-- Replace the date and time with the date and time you noted earlier
STOPAT = '2012-03-08 14:22:28.040'

Listing 8-9:	 Restoring the transaction log to a specified point in time.

Now, if we run a SELECT query on the Items table in the restored NorthPole2
database, you will see that there are four rows. If you run the same query on the original
NorthPole database, you will see that the table contains one row (or no rows if you
didn't run Listing 8-6).

You can verify that the FILESTREAM data is restored correctly to the point prior to the
"wrong operation," by doing one of the following:

•	 run a SELECT query on the Items table and look at the ItemImage column; you will
see that the column contains BLOB values which reference the FILESTREAM data

•	 go to Windows Explorer and look at the FILESTREAM data container; you will notice
that there are four files in the folder.

Point-in-time recovery for FILESTREAM-enabled databases gives database adminis-
trators one more reason for moving to FILESTREAM storage from the traditional
storage methods.

File Backups and Piecemeal Restores

Generally speaking, the fact that a database backup includes the FILESTREAM data files is
a bonus; it reduces the administrative overhead for DBAs, as they no longer need to worry
about separately backing up disk files.

323

Chapter 8: Backup and Restore for FILESTREAM Databases

However, there may be times when a DBA does not want the FILESTREAM data to be
part of the regular database backups. For example, you may want to grab a most recent
copy of the production database and send it to the development/test team. A production
database with FILESTREAM data could be quite large, and you might only need the
relational data for your development or test environment.

It is possible to create a full file backup of a FILESTREAM database to exclude the
FILESTREAM filegroups. This is helpful when you do not care about the FILESTREAM
data and only want to deal with the relational data. When you restore such a backup
using the Enterprise edition of SQL Server, you will be able to query all the relational
data. However, any query that tries to access the FILESTREAM data will obviously fail.

Let's go ahead and run some scripts to see this in action. First, rerun the script in Listing
8-1 to re-create the sample database, and then run the script provided in Listing 8-10 to
take a backup of the PRIMARY filegroup (excluding the FILESTREAM filegroup).

-- Take a backup
BACKUP DATABASE NorthPole
 FILEGROUP = 'PRIMARY'
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPolePrimary.bak'
GO

Listing 8-10:	 Creating a file backup that excludes the FILESTREAM filegroup.

Now let's go ahead and create a new database from this partial backup.

-- Restore
RESTORE DATABASE NorthPolePartial
 FROM DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPolePrimary.bak'
 WITH RECOVERY,
 PARTIAL,
 MOVE 'NorthPole' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPolePartial.mdf',
 MOVE 'NorthPole_log' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPolePartial_log.ldf',
GO

Listing 8-11:	 Restoring a partial backup that excludes FILESTREAM filegroups.

324

Chapter 8: Backup and Restore for FILESTREAM Databases

The script in Listing 8-11 restores the file backup that we created earlier. Note the usage
of the PARTIAL option in the restore process. When the script has successfully executed,
the new database will be online and you will be able to query all the data that is available
in the primary filegroup.

Any filegroups that were not part of the restore will be piecemeal restored and, in the
case below, the FILESTREAM filegroup will be marked as RECOVERY_PENDING, as shown
from the query against the system catalog view sys.database_files in Listing 8-12.

USE NorthPolePartial
GO
SELECT
 type_desc,
 name,
 physical_name,
 state_desc
FROM sys.database_files

/*
type_desc name physical_name state_desc
---------- ------------ ------------------------------ ---------------
ROWS NorthPoleDB C:\ArtO..\NorthPolePartial.mdf ONLINE
LOG NorthPoleLOG C:\..\NorthPolePartial_log.ldf ONLINE
FILESTREAM NorthPoleFS C:\ArtOfFS\Dem...\NorthPole_fs RECOVERY_PENDING
*/

Listing 8-12:	 Retrieving the list of filegroups associated with a database.

The FILESTREAM filegroup will become a "ghost" and, unless you have a file backup of
the FILESTREAM filegroup and associated transaction logs, there is no way to get rid of it.
The data stored in such ghost filegroups will not be available to the database.

In this example, all the data in the Items table except the FILESTREAM columns will be
available for reading and writing. However, if we attempt to access the FILESTREAM data,
SQL Server will generate an error. Therefore, the SELECT * on the Items table will fail
because this operation attempts to read the FILESTREAM column along with all the other
columns, as illustrated in Listing 8-13.

325

Chapter 8: Backup and Restore for FILESTREAM Databases

USE NorthPolePartial
GO

SELECT *
FROM Items
/*
Msg 670, Level 16, State 1, Line 2
Large object (LOB) data for table "dbo.Items" resides on an
offline filegroup ("NorthPoleFS") that cannot be accessed.
*/

Listing 8-13:	 A SELECT * query on a FILESTREAM table will fail if the FILESTREAM

filegroup is not available.

If only the relational data is selected, the query will be successful. If a partial restore
sequence excludes any FILESTREAM filegroup, point-in-time restore is not supported.
For more information see Piecemeal Restores (SQL Server) at http://brurl.com/fs24.

Data and Backup Compression for FILESTREAM
Databases

One of the primary concerns with regard to having a database storing large amounts of
BLOB data is the storage challenge, since FILESTREAM-enabled databases are expected
to store huge amounts of data.

SQL Server 2008 introduced a data compression feature with compression of relational
data at the page or row level. However, it does not compress the FILESTREAM data
associated with the relational data.

It is possible to mark a FILESTREAM data container as "compressed" at the Windows
level, which ultimately compresses the FILESTREAM data stored in the folder. However,
this option is beneficial only if the data in the FILESTREAM data container is further
compressible. If the data is already compressed (such as a zip file, jpeg, etc.) enabling

http://brurl.com/fs24

326

Chapter 8: Backup and Restore for FILESTREAM Databases

compression at the NTFS level will incur unwanted CPU overhead. Though the early
FILESTREAM documentation such as the FILESTREAM white paper at http://brurl.
com/fs7 does not explicitly discourage using NTFS compression on FILESTREAM
data containers, this blog post from the Microsoft Customer Service and Support team
counsels against it (http://brurl.com/fs8).

However, it is possible to take a compressed backup of a FILESTREAM-enabled database.
When taking a compressed backup, FILESTREAM data will also be compressed and,
depending upon how compressible the FILESTREAM data is, you will notice a difference
in the backup size.

Beware of Garbage Files in FILESTREAM Backups

In my experience, it's possible that a full backup of a FILESTREAM-enabled database
will also include the garbage files present in the FILESTREAM data container at the time
of taking the backup. SQL Server does not filter out the garbage files when creating
the backup file. Even if the transaction that generated the garbage file is committed,
the garbage files will still be part of the backup until they are removed by the garbage
collector thread.

The following example demonstrates this behavior. Begin by recreating our sample
database using the script provided in Listing 8-1. Once the database is created, run the
script in Listing 8-14, which updates the FILESTREAM value 100 times to generate 100
garbage files.

-- Update the data 100 times
DECLARE @i INT = 1
WHILE @i <= 100 BEGIN
 UPDATE Items SET ItemImage = 0x
 SET @i = @i + 1
END

Listing 8-14:	 Updating a non-NULL FILESTREAM value to generate new garbage files.

http://brurl.com/fs7
http://brurl.com/fs7
http://brurl.com/fs8

327

Chapter 8: Backup and Restore for FILESTREAM Databases

Each iteration of the loop updates the value stored in the ItemImage column of
the Items table, and each UPDATE operation generates a new garbage file. After the
execution completes, you can see the garbage files by looking into the FILESTREAM data
container associated with the ItemImage column. You will see 101 files in the folder, of
which 100 are garbage files.

We have seen how to locate the FILESTREAM data container associated with a database/
table/column in the earlier chapters. If you still find it difficult, you can find a number of
useful queries in Chapter 9: Investigating FILESTREAM Databases.

We now take a full backup of the NorthPole database by running the script shown in
Listing 8-15. We are using the WITH INIT option to overwrite any previous backup sets in
the backup file.

-- Take a backup
BACKUP DATABASE NorthPole
 TO DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole.bak'
 WITH INIT
GO

Listing 8-15:	 Generating a full backup file.

This full backup will include all the 100 garbage files we generated in the previous step.
To verify this, we can restore the backup to create a new database, NorthPole3, and put
the FILESTREAM data into C:\ArtOfFS\Demos\Chapter8\NorthPole3_fs (or any
other folder that you prefer).

-- Restore
RESTORE DATABASE NorthPole3
 FROM DISK = 'C:\ArtOfFS\Demos\Chapter8\bak\NorthPole.bak'
 WITH RECOVERY,
 MOVE 'NorthPole' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole3.mdf',
 MOVE 'NorthPole_log' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole3_log.ldf',
 MOVE 'NorthPole_fs' TO 'C:\ArtOfFS\Demos\Chapter8\NorthPole3_fs',
 FILE=1
GO

Listing 8-16:	 Restoring a FILESTREAM database.

328

Chapter 8: Backup and Restore for FILESTREAM Databases

When the backup has been restored, go to the FILESTREAM data container and you
will see 101 files instead of just the 1 that you would normally expect to see. It is quite
surprising to see that all the garbage files came along with the backup, and they all got
restored in the new location.

The garbage files unnecessarily increase the backup time and size, and increase the disk
space requirements on the target location. My tests showed that a transaction log backup
followed by a full backup on the target database clears the garbage files the next time the
garbage collector runs.

Summary

We have seen that taking a backup of a FILESTREAM database is no different from
backing up a non-FILESTREAM database. However, a restore operation may need a little
bit more attention when restoring to a different database because you have to specify the
location to which the FILESTREAM data is to be restored. In addition, you need to make
sure that the FILESTREAM feature is enabled on the target database. SQL Server supports
point-in-time recovery of FILESTREAM-enabled databases and this chapter presented an
example to demonstrate this feature.

SQL Server allows the creation of full file backups of FILESTREAM databases that do not
include the FILESTREAM filegroups. When such a backup is restored, all the relational
data will be accessible. If you attempt to access the FILESTREAM data, SQL Server will
generate an error.

The backup of a FILESTREAM database includes the garbage and orphaned files that are
present in the FILESTREAM data container at the time of the backup. These files will be
restored on the target location when the database is restored.

329

Chapter 9: Investigating FILESTREAM
Databases

In the previous two chapters, we examined FILESTREAM database administration in
some detail. To complete the discussion, we examine here our various options for
investigating the FILESTREAM database and configuration metadata.

This chapter focuses on exposing a number of FILESTREAM-related system catalog views,
along with a number of useful queries that help you to retrieve various valuable pieces of
information about the FILESTREAM configuration. We also take a brief look at some of
the in-depth information available from the FILESTREAM-related Dynamic Management
Views (DMVs), and the available wait types that might help you troubleshoot various
FILESTREAM performance issues.

Relevant System Catalog Views

SQL Server has a number of FILESTREAM-related system views that we can use to find
information about FILESTREAM tables and columns.

We'll briefly review the system views that contain metadata relevant to FILESTREAM
columns, and then take a look at some useful queries based on these views, which can
give us such information as the location of the FILESTREAM data container, the names
of all tables in a database that contain FILESTREAM columns, and so on.

330

Chapter 9: Investigating FILESTREAM Databases

sys.all_columns, sys.columns and sys.system_
columns

The sys.all_columns view contains the columns belonging to all the user-defined
objects and system objects in the current database.

The sys.columns view is essentially a subset of sys.all_columns and contains
the columns belonging to all the table valued assembly functions, inline table valued
functions, internal tables, system tables, table valued functions, user tables and views,
again, in the current database.

Both views contain the is_filestream column, which returns 1 for FILESTREAM
columns, and so can be used to determine all the FILESTREAM columns in the current
database, as shown in Listing 9-1.

SELECT
 s.name AS SchemaName,
 t.name AS TableName,
 c.name AS ColumnName
FROM SYS.columns c
INNER JOIN sys.tables t ON t.object_id = c.object_id
INNER JOIN sys.schemas s ON s.schema_id = t.schema_id
WHERE is_filestream = 1
/*
SchemaName TableName ColumnName
---------- --------- ----------
dbo Items ItemImage
*/

Listing 9-1:	 Retrieving all the FILESTREAM columns from the current database.

This sys.sytem_columns view contains a row for every column in all system
objects and also has an is_filestream column which is expected to return 1 for all
FILESTREAM columns. However, since none of the system tables in the SQL Server
versions up to and including 2012 have FILESTREAM columns, this column will always
contain 0. It is possible that a future version of SQL Server may have system tables with
FILESTREAM columns.

331

Chapter 9: Investigating FILESTREAM Databases

sys.computed_columns

The system view sys.computed_columns contains a record for every computed
column in the current database.

sys.computed_columns has a column is_filestream, which indicates whether
the column has a FILESTREAM attribute or not. Although SQL Server (2008, 2008 R2,
and 2012) allows the creation of computed columns based on FILESTREAM columns,
it does not allow the creation of computed columns with the FILESTREAM attribute.
Therefore, the is_filestream column on every row in sys.computed_columns will
always be 0.

sys.identity_columns

This view contains a list of all the columns in the current database that are marked as
IDENTITY columns. This view has a column is_filestream, which will be always 0
because an IDENTITY column cannot have the FILESTREAM attribute.

sys.dm_repl_traninfo

This system view returns information about each replicated transaction on a database
that is configured for replication.

This view has a FILESTREAM-related column fsinfo_address which is a
VARBINARY(8) value that stores the in-memory address of the cached FILESTREAM
information structure.

332

Chapter 9: Investigating FILESTREAM Databases

sys.tables

The system catalog view sys.tables contains a row per user-defined table in the current
database. The column filestream_data_space_id refers to the data space ID of a
FILESTREAM filegroup or a partition scheme that consists of FILESTREAM filegroups.

sys.internal_tables

The system catalog view sys.internal_tables contains one row for every internal
table in the current database. According to Books Online, internal tables are automati-
cally generated by SQL Server to support specific features; they are generated when those
features are enabled, and removed when the features are disabled. It looks like this is not
true for the FILESTREAM-specific internal table, FILESTREAM_TOMBSTONE. It is also
found in the model database and automatically added to every new database, whether or
not the FILESTREAM feature is enabled.

This view has a number of columns that are relevant to the FILESTREAM feature.

•	 internal_type – A TINYINT column that specifies the type of the internal table
being referenced by the current row. If the current database has a FILESTREAM
tombstone table, it will show up in this view and the internal_type column will be
set to 208. (For more information about the tombstone table, refer back to Chapter 7.)

•	 internal_type_desc – The text description of the internal_type column. For
FILESTREAM tombstone tables, the value will be FILESTREAM_TOMBSTONE.

•	 name – The name of the table. FILESTREAM tombstone tables are named as
filestream_tombstone_nnnnn, where nnnnn is a number that points to the
object_id of the table.

•	 filestream_data_space_id – An integer value that is reserved for future use.

333

Chapter 9: Investigating FILESTREAM Databases

sys.partitions

This view contains a row for each partition of all the tables and indexes in the given
database. One of the columns in this view is filestream_filegroup_id, which points
to the filegroup ID in the sys.filegroups table.

sys.data_spaces

This view returns a row for every filegroup, partition schema, and FILESTREAM filegroup.
The query in Listing 9-2 retrieves all the FILESTREAM filegroups in the current database.

SELECT
 *
FROM sys.data_spaces
WHERE type_desc = 'FILESTREAM_DATA_FILEGROUP'
/*
name data_space_id type type_desc is_default
------------ ------------- ---- ------------------------- ----------
NorthPole_fs 2 FD FILESTREAM_DATA_FILEGROUP 1
*/

Listing 9-2:	 Retrieving all the FILESTREAM filegroups in the current database.

The following columns of this view are related to the FILESTREAM feature.

•	 name – The name of the filegroup, partition schema, or FILESTREAM filegroup.

•	 data_space_id – The unique data space ID.

•	 type – The type of data space. For FILESTREAM filegroups, this will be set to FD.

•	 type_desc – A description of the data space. For FILESTREAM filegroups, this will
be FILESTREAM_DATA_FILEGROUP.

•	 is_default – If the filegroup is marked as the default filegroup, this will be set to 1.

334

Chapter 9: Investigating FILESTREAM Databases

sys.database_files

The sys.database_files view lists all files defined in the current database. There
are three columns of particular interest when querying for FILESTREAM-related infor-
mation. First, the type and type_desc columns indicate the type of file. A type of 2
or type_desc of FILESTREAM indicates a FILESTREAM data container (which, as we
know, is actually a folder in the file system and not a file). The physical_name column
contains the full path in the file system where the database file is located. In the case of a
FILESTREAM data container, it is the root of the FILESTREAM data container.

Upon close investigation, one will also find that the maxsize and growth columns
contain values of 0, which is never the case for data or log files.

sys.filegroups

This view inherits from sys.data_spaces and contains all the columns in the parent
view and a few additional ones. The columns that are of interest for FILESTREAM are
those that are inherited from sys.data_spaces, described above.

sys.system_internals_partition_columns

This system view contains a number of internal columns copied from the catalog of the
relational engine. One of the columns relevant to this discussion is the is_filestream
column that specifies whether the column being described has a FILESTREAM attribute.
However, the information retrieved from this view is redundant and is available in other
system views.

Books Online warns that this view is reserved for the internal system usage only and future
compatibility is not guaranteed. This view is included for completeness only.

335

Chapter 9: Investigating FILESTREAM Databases

sys.system_internals_partitions

This is another internal view that contains some FILESTREAM-related information. Two
columns that are relevant to the FILESTREAM feature are filestream_filegroup_id
and filestream_guid. filestream_filegroup_id refers to the filegroup ID of the
FILESTREAM filegroup.

Again, Books Online warns that this view is reserved for the internal system usage
only and future compatibility is not guaranteed. Personally, however, I found this view
very helpful and have used it a number of times to retrieve various pieces of information
related to the location of the FILESTREAM folders (see, for example, Listings 9-10
and 9-11).

sys.filestream_tombstone_*

This is an internal table that the FILESTREAM feature uses to keep track of the garbage
files. When a garbage file is generated, it is recorded in this table and the garbage collector
reads information from the tombstone table and cleans the garbage based on it.

A detailed explanation of this table is provided in Chapter 7.

Useful FILESTREAM Metadata Queries

While working with FILESTREAM-enabled databases, you might very often come across
cases where you need to query the FILESTREAM metadata to retrieve information. This
section provides some FILESTREAM metadata queries, using many of the system catalog
views discussed previously, which you might find very helpful.

336

Chapter 9: Investigating FILESTREAM Databases

SQL Server instance-level queries

Let's start with a few queries that are helpful for retrieving FILESTREAM-related
information on the SQL Server instance level. These make extensive use of the system
function, SERVERPROPERTY().

Is FILESTREAM enabled?

The system function SERVERPROPERTY() can be used to determine whether the
FILESTREAM feature is enabled on the current SQL Server instance, as shown in
Listing 9-3.

IF SERVERPROPERTY('FilestreamEffectiveLevel') > 0
 PRINT 'FILESTREAM is enabled'
ELSE
 PRINT 'FILESTREAM is disabled'

Listing 9-3:	 Determining whether FILESTREAM is enabled.

Identify the FILESTREAM access level

The system function SERVERPROPERTY() can be used to determine the FILESTREAM
access level in the current SQL Server instance, as shown in Listing 9-4.

SELECT
 SERVERPROPERTY('FilestreamConfiguredLevel')
 AS FilestreamConfiguredLevel,
 SERVERPROPERTY('FilestreamEffectiveLevel')
 AS FilestreamEffectiveLevel

337

Chapter 9: Investigating FILESTREAM Databases

/*
FilestreamConfiguredLevel FilestreamEffectiveLevel
------------------------- ------------------------
3 3
*/

Listing 9-4:	 Identifying the FILESTREAM access level at the Windows level.

Both FilestreamConfiguredLevel and FilestreamEffectiveLevel return a
numeric value that indicates the current configuration value, as follows:

•	 0 – FILESTREAM is disabled

•	 1 – FILESTREAM is enabled for T-SQL access

•	 2 – FILESTREAM is enabled for T-SQL and Win32 streaming access (local only)

•	 3 – FILESTREAM is enabled for T-SQL and Win32 streaming access (local and remote)
(Undocumented).

The difference between FilestreamConfiguredLevel and FilestreamEffective-
Level is found in how FILESTREAM requires configuration changes at the Windows
level, through Configuration Manager, and at the SQL Server instance level through
SSMS or the sp_configure stored procedure (see Appendix A for more details).

Note that at time of writing (March 2012) the description of these server properties given in
Books Online was not accurate.

The FilestreamConfiguredLevel property returns the value as configured in
Configuration Manager. FilestreamEffectiveLevel returns the actual ("effective")
level of FILESTREAM access that is enabled. FilestreamEffectiveLevel can be less
than or equal to FilestreamConfiguredLevel. If the configuration at the instance
level is different from the configuration at the Windows level, the lower access level will
prevail. Let's examine this in the matrix below.

338

Chapter 9: Investigating FILESTREAM Databases

Windows
Instance

0 1 2
(local only)

3
(local and remote)

0: Disabled 0 0 0 0

1: T-SQL access only 0 1 1 1

2: T-SQL and streaming access 0 1 2 3

The matrix shows how the values configured at the instance level (rows) and those
configured at the Windows level (columns) result in the FilestreamEffectiveLevel.
You'll notice that the lower of the two always wins. For example, if the Windows configu-
ration allows T-SQL and Win32 streaming access but the instance is configured for T-SQL
access only, then the effective configuration is T-SQL access only. In plain terms, if the
desired access level is remote streaming access, this will need to be configured as such,
both at the Windows level and at the instance level.

The matrix also shows that it's not possible to control the difference between local and
remote streaming access at the instance level. That difference can only be controlled at
the Windows level. (Early CTP versions of SQL Server 2008 did have that ability, but for
unknown reasons it was removed before the release.)

You can check the output of the following T-SQL statement to find the configured value
at the SQL Server instance level (Listing 9-5).

EXEC sp_configure 'filestream_access_level'
/*
name minimum maximum config_value run_value
----------------------- ------- ------- ------------ ---------
filestream access level 0 2 2 2
*/

Listing 9-5:	 Identifying the FILESTREAM access level at the instance level.

339

Chapter 9: Investigating FILESTREAM Databases

The column config_value contains the current configured value at the SQL Server
instance level:

•	 0 – FILESTREAM is disabled

•	 1 – FILESTREAM is enabled for T-SQL access

•	 2 – FILESTREAM is enabled for T-SQL and Win32 streaming access.

Unlike the FilestreamEffectiveLevel and FilestreamConfiguredLevel server
properties, the possible values for config_value do not include '3'.

Identify the FILESTREAM share name

The FILESTREAM share name can be retrieved from the SERVERPROPERTY() system
function using the FilestreamShareName parameter, as shown in Listing 9-6.

SELECT
 SERVERPROPERTY('FilestreamShareName')
 AS FilestreamShare
/*
FilestreamShare

MSSQLSERVER
*/

Listing 9-6:	 Retrieving the FILESTREAM share name.

Identify the FILESTREAM-enabled databases

To determine whether a database is FILESTREAM-enabled, we need to check whether the
database has a FILESTREAM filegroup or not. This can be identified from the system view
sys.filegroups. The T-SQL code in Listing 9-7 checks for a FILESTREAM filegroup in
each database in the current SQL Server instance.

340

Chapter 9: Investigating FILESTREAM Databases

CREATE TABLE #db (dbname SYSNAME)
EXECUTE sp_MSforeachdb '
 INSERT INTO #db(dbname)
 SELECT ''?'' FROM [?].sys.filegroups
 WHERE type = ''FD'''

SELECT * FROM #db
DROP TABLE #db

Listing 9-7:	 Identifying all the FILESTREAM-enabled databases.

Database-level queries

These queries retrieve specific FILESTREAM-related information from the
current database.

Identifying the FILESTREAM data container location

The path to the FILESTREAM data container(s) associated with the current database
can be identified by looking at the physical_name column of the system view sys.
database_files, as shown in Listing 9-8.

SELECT
 db_name() AS DatabaseName,
 physical_name AS FilestreamFolder
FROM sys.database_files
WHERE type_desc = 'FILESTREAM'
/*
DatabaseName FilestreamFolder
------------ --------------------------------------
NorthPole C:\ArtOfFS\Demos\Chapter9\NorthPole_fs
*/

Listing 9-8:	 Identifying the FILESTREAM data container of a database.

341

Chapter 9: Investigating FILESTREAM Databases

Identifying the tables with FILESTREAM columns

A FILESTREAM column can be identified by looking at the is_filestream column of
the system view sys.columns, as shown in Listing 9-9.

SELECT DISTINCT
 OBJECT_NAME(OBJECT_ID) AS TableName
FROM sys.columns c
WHERE c.is_filestream = 1
/*
TableName

Items
Items2
Items3
Items4
*/

Listing 9-9:	 Retrieving a list of all tables with FILESTREAM fields in a database.

Identifying the FILESTREAM folder names associated with
each FILESTREAM table

SQL Server creates a root folder for every FILESTREAM table in the database. Since the
folders are named using GUID values, it will often be very confusing when you have
several FILESTREAM tables in the database. Listing 9-10 shows a query that can be used
to determine the folder names associated with each FILESTREAM table.

SELECT
 t.name AS TableName,
 d.name AS FileGroup,
 p.filestream_guid AS FolderName
FROM sys.tables t
INNER JOIN sys.system_internals_partitions p
 ON p.object_id = t.object_id

342

Chapter 9: Investigating FILESTREAM Databases

INNER JOIN sys.data_spaces d
 ON d.data_space_id = t.filestream_data_space_id
WHERE p.filestream_filegroup_id > 0
/*
TableName FileGroup FolderName
--------- ------------- ------------------------------------
Items1 NorthPole_fs1 041C0478-8EB6-4C65-B0AD-12E29DF69D09
Items2 NorthPole_fs2 AEA2F2A4-4CA5-4790-AB16-1F78379D69C8
*/

Listing 9-10:	 Retrieving the FILESTREAM folders associated with each table in the current database.

Note that, without the WHERE clause, two rows are returned for each table with
FILESTREAM columns. The second row contains NULL as the filestream_guid value.
There are two rows in sys.system_internals_partitions for a single table with
FILESTREAM columns. The difference seems to be in the filestream_filegroup_id
field that is set to "0" for the row that has the NULL in the filestream_guid field.

If the FILESTREAM table is partitioned, SQL Server will create a root folder per partition
in the table. If you have partitioned FILESTREAM tables, you might need a slightly
modified version of the above query to determine the FILESTREAM folder names of each
partition, as shown in Listing 9-11. It is interesting to note that SQL Server does not list
the NULL row we saw earlier when the table is partitioned; therefore, this query does not
have the same WHERE clause.

SELECT
 t.Name AS TableName,
 sip.partition_number AS PartitionNumber,
 sip.filestream_guid AS FilestreamFolder
FROM sys.system_internals_partitions sip
INNER JOIN sys.partitions p ON p.partition_id = sip.partition_id
 AND sip.filestream_guid IS NOT NULL
INNER JOIN sys.tables t
 ON t.object_id = p.object_id

343

Chapter 9: Investigating FILESTREAM Databases

/*
TableName PartitionNumber FilestreamFolder
--------- --------------- ------------------------------------
Items 1 8C2E5B76-40E9-4F14-81D1-809DD2AB377E
Items 2 9410B335-DF04-48B1-BC14-6B7DE5022133
Items 3 5C3C61C5-978B-4014-A8BA-B35FE79127DA
*/

Listing 9-11:	 Retrieving the FILESTREAM folders of each partition.

Identifying the FILESTREAM filegroup associated with each
FILESTREAM table

Listing 9-12 retrieves all the FILESTREAM tables in the current database and shows the
FILESTREAM filegroups associated with each table.

SELECT
 t.name AS TableName,
 f.name AS FilestreamFileGroup,
 fl.physical_name AS FilestreamFolder
FROM sys.tables t
INNER JOIN sys.filegroups f
 ON f.data_space_id = t.filestream_data_space_id
INNER JOIN sys.database_files fl
 ON fl.data_space_id = f.data_space_id
/*
TableName FilestreamFileGroup FilestreamFolder
--------- ------------------- --------------------------------------
Items2 NorthPole_fs C:\ArtOfFS\Demos\Chapter9\NorthPole_fs
Items3 NorthPole_fs C:\ArtOfFS\Demos\Chapter9\NorthPole_fs
Items4 NorthPole_fs C:\ArtOfFS\Demos\Chapter9\NorthPole_fs
Items NorthPole_fs C:\ArtOfFS\Demos\Chapter9\NorthPole_fs
*/

Listing 9-12:	 Retrieving all the FILESTREAM tables and their FILESTREAM filegroups.

344

Chapter 9: Investigating FILESTREAM Databases

If the table is partitioned, you will need a different version of the above query to retrieve
the same information. This is given in Listing 9-13.

SELECT
 t.name AS [Table],
 f.name AS FilestreamFG,
 f.physical_name AS FilestreamFolder
FROM sys.tables t
INNER JOIN sys.partitions p
	 ON p.object_id = t.object_id
INNER JOIN sys.database_files f
	 ON f.data_space_id = p.filestream_filegroup_id
	 AND f.type_desc = 'FILESTREAM'

/*
Table FilestreamFG FilestreamFolder
----- ------------- ---------------------------------------
Items NorthPole_fs1 C:\ArtOfFS\Demos\Chapter7\NorthPole_fs1
Items NorthPole_fs2 C:\ArtOfFS\Demos\Chapter7\NorthPole_fs2
Items NorthPole_fs3 C:\ArtOfFS\Demos\Chapter7\NorthPole_fs3
*/

Listing 9-13:	 Retrieving all the FILESTREAM tables and their FILESTREAM filegroups on the partitioned

database (from Chapter 7).

Identifying the FILESTREAM folder name associated with
each FILESTREAM column

If a table has more than one FILESTREAM column, it will often be very confusing
to identify the folder associated with each column. Listing 9-14 retrieves a list of all
FILESTREAM columns in a table, along with the FILESTREAM folder associated with
the column.

345

Chapter 9: Investigating FILESTREAM Databases

DECLARE @objectID INT
SELECT @objectID = OBJECT_ID('Items4')

SELECT
 cp.name AS [ColumnName],
 p.partition_number AS [Partition],
 CAST(rs.colguid AS UNIQUEIDENTIFIER) AS [FolderName]
FROM sys.sysrscols rs
INNER JOIN sys.partitions p ON rs.rsid = p.partition_id
 AND rs.colguid IS NOT NULL
 AND p.object_id = @objectID
INNER JOIN sys.syscolpars cp ON cp.colid = rs.rscolid
 AND cp.id = @objectID

/*
ColumnName Partition FolderName
---------- ----------- ------------------------------------
ItemImage1 1 BE0F0AE1-03CB-45EA-93E6-AE9CE4C3C875
ItemImage2 1 5F14959C-36A7-4A6F-9BC7-567A9B8CB5DB
ItemImage3 1 A505E6F6-2B34-454B-BF60-A142294349E0
ItemImage4 1 BB9EE893-0CDB-4849-B0FB-4E0DBCF57864
ItemImage5 1 D14A7768-8FCC-4B32-B776-89C2CDD8BB1F
*/

Listing 9-14:	 Retrieving the FILESTREAM folders associated with each FILESTREAM column in a table.

This query tries to read from a few "internal" tables that are not accessible to regular user
queries. If you copy and paste the above query into your query window and run it, you
will receive the following error:

Msg 208, Level 16, State 1, Line 4

Invalid object name 'sys.sysrscols'.

This happens because the view sys.sysrscols is not accessible to user mode queries.
To run queries that are not accessible to user mode queries, you need to make a DAC to
the database. Connecting to SQL Server using a DAC was discussed in Chapter 7.

346

Chapter 9: Investigating FILESTREAM Databases

Identifying the FILESTREAM file name associated with each
FILESTREAM value

SQL Server names FILESTREAM files based on the transaction LSN that created the file.
SQL Server keeps track of this value internally and uses it to identify the correct file when
a read/write request comes in.

Though it is possible to identify the disk file associated with each FILESTREAM value
on your FILESTREAM column, it is a lengthy process. SQL Server MVP Paul Randal has
written a detailed blog post which explains how to do this. I would recommend you take a
look at it (http://brurl.com/fs9).

FILESTREAM-related DMVs

SQL Server has a number of FILESTREAM-related DMV views that we can use to
find very detailed information regarding FILESTREAM storage and activity against
FILESTREAM databases.

sys.dm_filestream_file_io_handles

This DMV returns all the open FILESTREAM handles which any client application has
opened using the Win32 API function OpenSqlFilestream or the SqlFilestream
managed class. It has a number of columns providing detailed information about the
open I/O handles. You can find a complete reference of all the columns in MSDN at
http://brurl.com/fs10. The columns below may be particularly helpful.

•	 filestream_transaction_id – Shows the ID of the transaction
associated with the given handle. This is the value returned by the

http://brurl.com/fs9
http://brurl.com/fs10

347

Chapter 9: Investigating FILESTREAM Databases

GET_FILESTREAM_TRANSACTION_CONTEXT() T-SQL function. This field can
be joined with the sys.dm_FILESTREAM_file_io_requests view to retrieve
additional information.

•	 access_type

•	 R: file opened for read operation

•	 W: file opened for write operation

•	 RW: file opened for read and write operation.

•	 logical_path – Shows the logical path name of the file that is associated with the
FILESTREAM handle. This is the same value that is returned by the PathName()
method.

•	 physical_path – shows the actual NTFS path name of the file being accessed. It is
enabled by tracing flag 5556.

•	 creation_client_process_id – This shows the ID of the Windows process which
is responsible for the FILESTREAM transaction. That can help narrow down which
application is misbehaving, and so on.

sys.dm_filestream_file_io_requests

This DMV displays a list of the FILESTREAM I/O requests being processed at the given
moment. This view can be joined with sys.dm_filestream_file_io_handles on
the filestream_transaction_id column to retrieve additional information about
the FILESTREAM operations going on.

You may want to query this DMV to retrieve extended information about the
FILESTREAM processing going on your server. You can find more information in Books
Online at http://brurl.com/fs11.

http://brurl.com/fs11

348

Chapter 9: Investigating FILESTREAM Databases

sys.dm_tran_active_transactions

This DMV returns the active transactions in all the databases in the given SQL Server
instance. If one or more FILESTREAM transactions are in progress, the filestream_
transaction_id of this will be non-NULL.

This view can be joined with sys.dm_filestream_file_io_handles on
filestream_transaction_id to retrieve additional information.

The T-SQL code in Listing 9-15 shows how to retrieve all the active FILESTREAM transac-
tions in the current instance.

SELECT *
FROM sys.dm_tran_active_transactions
WHERE filestream_transaction_id IS NOT NULL

Listing 9-15:	 Retrieving all the active FILESTREAM transactions in the current instance.

FILESTREAM and Wait Types

The FILESTREAM feature introduced a few new system wait types to deal with the
various FILESTREAM-related operations, available through the sys.dm_os_wait_
stats DMV.

FS_FC_RWLOCK

This wait type is generated by the FILESTREAM garbage collector. It occurs when garbage
collection is disabled prior to a backup or restore operation, or when a garbage collection
cycle is being executed.

349

Chapter 9: Investigating FILESTREAM Databases

FS_GARBAGE_COLLECTOR_SHUTDOWN

This wait type occurs during the cleanup process of a garbage collection cycle. It indicates
that the garbage collector is waiting for the cleanup tasks to be completed.

FS_HEADER_RWLOCK

This wait type indicates that the process is waiting to obtain access to the FILESTREAM
header file for read or write operation. The FILESTREAM header is a disk file located
in the FILESTREAM data container and is named filestream.hdr. This file contains
important metadata information that SQL Server uses to manage the FILESTREAM data
associated with a given database. Unlike FILESTREAM data files, SQL Server keeps an
exclusive lock on the filestream.hdr file.

FS_LOGTRUNC_RWLOCK

This wait type indicates that the process is trying to access FILESTREAM log truncation,
either to perform a log truncate operation, or to disable log truncation prior to a backup
or restore operation.

FSA_FORCE_OWN_XACT

This wait type occurs when a FILESTREAM file I/O operation needs to bind to the
associated transaction, but the transaction is currently owned by another session.

350

Chapter 9: Investigating FILESTREAM Databases

FSAGENT

FSAgent is part of the FILESTREAM subsystem which sits between the storage engine
and the FILESTREAM data. FSAgent manages the handling of FILESTREAM data files
in a transparent manner so that the rest of the storage engine feels that they are real
VARBINARY(MAX) values. This wait type occurs when a FILESTREAM file I/O operation
is waiting for FSAgent to perform an I/O operation. In the RTM version of SQL Server
2008, this wait type showed up in Activity Monitor, which may make performance
troubleshooting more difficult. This issue is documented in Microsoft KB article 958942
(http://brurl.com/fs12) and fixed in Cumulative Update 2 for SQL Server 2008.

FSTR_CONFIG_MUTEX

This wait type occurs when there is a wait for another FILESTREAM feature
reconfiguration to be completed.

FSTR_CONFIG_RWLOCK

This wait type occurs when there is a wait to serialize access to the FILESTREAM
configuration parameters.

Summary

SQL Server exposes a number of system catalog views, as well as DMVs, which
provide a good deal of insight into the internal metadata of FILESTREAM storage
and configuration. We have examined those views that are particularly helpful in
investigating FILESTREAM-enabled databases.

http://brurl.com/fs12

351

Chapter 10: Integrating FILESTREAM
with other SQL Server Features

As we have seen in the previous chapters, the FILESTREAM feature is implemented
as an additional attribute added to a VARBINARY(MAX) column. This model keeps
FILESTREAM features and the complexities associated with managing BLOB data
completely transparent to the T-SQL programming interface; T-SQL code can access
FILESTREAM data just as if it were a regular VARBINARY(MAX) column. Mostly, this
means that existing SQL Server features that work with VARBINARY(MAX) columns
work with FILESTREAM columns without requiring modification.

In this chapter, we will look at how well the FILESTREAM feature aligns with the
SQL Server features below.

•	 Replication

•	 Log shipping

•	 Full-text indexing

•	 Database snapshots

•	 Change Data Capture (CDC)

•	 Data compression

•	 Transparent data encryption

•	 Database Mirroring

•	 High Availability Disaster Recovery – Always On (HADRON).

352

Chapter 10: Integrating FILESTREAM with other SQL Server Features

FILESTREAM and Replication

Replication technologies provide a means to copy data from a primary database
(publisher) to one or more secondary databases (subscribers). Even though replication
wasn't designed for all the functions DBAs use it for today, it is nevertheless widely used
as a solution for reporting, load balancing, synchronization, high availability, disaster
recovery, and so on. SQL Server supports replicating FILESTREAM data but, of course,
FILESTREAM data is stored outside the database (in the file system) and is often used to
store very large data files, so it is interesting to examine how replication of FILESTREAM-
enabled databases works.

Replicating FILESTREAM columns

When replicating SQL Server 2008 FILESTREAM-enabled databases, FILESTREAM
columns can be replicated either with or without the FILESTREAM attribute.

If you replicate FILESTREAM columns with the FILESTREAM attribute, FILESTREAM
data values on the publisher column will go to a FILESTREAM column on the subscriber.
When you replicate a FILESTREAM database to a SQL Server 2008 or later instance,
in most cases you would want to replicate the FILESTREAM attribute along with the
FILESTREAM columns.

If you replicate FILESTREAM columns without the FILESTREAM attribute, FILESTREAM
data values on the publisher will be replicated as VARBINARY(MAX) columns on the
subscriber. In this way, it's possible to replicate a table with FILESTREAM columns to a
SQL Server 2005 subscriber, which doesn't support FILESTREAM. However, it is not
possible to replicate FILESTREAM columns to SQL Server 2000 subscribers. Table 10-1
summarizes the FILESTREAM replication support with previous versions of SQL Server.

353

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Publication
SQL Server
2008 and later

SQL Server
2005

SQL Server
2000 or earlier

Replicate as FILESTREAM Supported Not supported Not supported

Replicate as VARBINARY(MAX) Supported Supported Not supported

Table 10-1:	 FILESTREAM replication support for SQL Server versions.

Note that it is not possible to create a single publication that replicates FILESTREAM
columns with the FILESTREAM attribute to SQL Server 2008 subscribers and without the
FILESTREAM attribute to SQL Server 2005 subscribers.

Size limits when replicating FILESTREAM columns as VARBINARY(MAX) columns

When replicating FILESTREAM values as VARBINARY(MAX) columns to SQL Server 2008, and later,

subscribers, the maximum data size supported is 2 GB. However, replicating large data values from

SQL Server 2008 publishers to SQL Server 2005 subscribers is limited to a maximum of 256 MB of data.

Replication will fail if the data value is larger.

By default, FILESTREAM columns are configured to replicate as VARBINARY(MAX)
values. You can change this setting from the property page of the publication using SSMS.
To do this, open the publication properties dialog box by right-clicking on the publication
and selecting Properties. Then, on the Articles tab, right-click on the desired table article
and select the Set Properties menu item. Change the property value Convert filestream
to MAX data types to False (Figure 10-1).

354

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Figure 10-1:	 Choosing to replicate FILESTREAM columns with the FILESTREAM attribute.

Click OK on the Article Properties dialog box and then again on the Publication
Property dialog box to save the changes. You must then reinitialize the subscriptions for
the changes to take effect.

You can also use T-SQL to specify that you want to replicate FILESTREAM columns
with the FILESTREAM attribute; details are provided later in the section, Managing the
FILESTREAM replication flag using T-SQL.

355

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Maximum replication data size

While configuring replication for FILESTREAM columns to VARBINARY(MAX) columns,
one of the most important configuration parameters that needs attention is the maximum
replication data size setting. This is a SQL Server instance-level configuration which, by
default, is set to 64 KB.

Therefore, under the default maximum replication data size, and default FILESTREAM
to VARBINARY(MAX) conversion settings, transactional or merge replication of a
FILESTREAM () column, or any other large-value type, will fail if we attempt to store
values larger than 64 KB. And not only the replication, but also the INSERT or UPDATE
operation will fail; SQL Server will abort the INSERT or UPDATE operation and generate
the following error:

Length of LOB data (nnnn) to be replicated exceeds configured maximum 65536.

The statement has been terminated.

As we have seen several times in the previous chapters, FILESTREAM columns are ideal
only if the values you expect to store in the FILESTREAM column are 1 MB or larger.
This obviously means that when you set up transactional replication, you should either
replicate to FILESTREAM, or change the maximum replication data size configuration
setting so that values larger than 64 KB can be stored and replicated.

To change the maximum replication size configuration setting, right-click on the SQL
Server instance in SSMS Object Explorer and click Properties, navigate to the Advanced
tab and edit the setting, as shown in Figure 10-2.

Once the maximum replication data size setting has been increased, you will be able to
replicate FILESTREAM data values to VARBINARY(MAX) that are less than, or equal to,
the size specified.

356

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Figure 10-2:	 Using SSMS to change the maximum data replication size.

To change the maximum replication data size using T-SQL, you configure the max
text repl size setting using the system stored procedure, sp_configure. You can
specify any value within the range of 0 to 2147483647 bytes, or simply specify 1 to instruct
SQL Server to impose a restriction depending on the maximum storage capacity of the
associated data type as shown in Listing 10-1. As noted earlier, this raises the size limit to
2 GB when replicating to SQL Server 2008, and later, instances, but the limit remains only
256 MB when replicating to SQL Server 2005 instances.

357

Chapter 10: Integrating FILESTREAM with other SQL Server Features

sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
sp_configure 'max text repl size', -1;
GO
RECONFIGURE;
GO

Listing 10-1:	 Using T-SQL to change the maximum replication data size.

FILESTREAM replication and the
UNIQUEIDENTIFIER column

In Chapter 2, we discussed the fact that FILESTREAM columns can be added to a
table only if it has a UNIQUEIDENTIFIER column that is marked as a ROWGUIDCOL
with a UNIQUE constraint. When replicating FILESTREAM columns with the
FILESTREAM attribute, we must ensure that the UNIQUEIDENTIFIER column is
also selected for replication and that the UNIQUE constraint replicated along with
the UNIQUEIDENTIFIER column.

If we remove the UNIQUEIDENTIFIER column from the publication, or decide not to
replicate the UNIQUE constraint, the FILESTREAM attribute will not be replicated to the
subscriber; it will be replicated as a VARBINARY(MAX) column, even if we set the Convert
FILESTREAM to MAX data types to FALSE.

When a replication requirement exists, it is especially important to consider how to
generate the values for the UNIQUEIDENTIFIER column of FILESTREAM tables. A
new GUID value can be generated using either NEWID() or NEWSEQUENTIALID().
Using NEWSEQUENTIALID() is recommended over NEWID() because it provides better
replication performance and less fragmentation of the data. It should be noted that using
NEWSEQUENTIALID() is only supported in a DEFAULT constraint and this may not be
appropriate for a particular scenario.

358

Chapter 10: Integrating FILESTREAM with other SQL Server Features

When creating a merge or transactional publication with updatable subscriptions, SQL
Server will automatically add a UNIQUEIDENTIFIER column, with a ROWGUIDCOL
attribute if the table does not already have one. On FILESTREAM tables, SQL Server will
use the existing GUID column.

When adding a FILESTREAM column to a table that is already published for merge
or transactional replication with updatable subscriptions, we don't need to add a new
UINQUEIDENTIFIER column because the replication process will already have done so
when the table was published for two-way replication. However, we must ensure that the
UINQUEIDENTIFIER column has a UNIQUE constraint; if the column does not have a
UNIQUE constraint, you need to add one before creating the FILESTREAM column on
the table.

By default, merge replication and transactional replication are configured to replicate
schema changes to the subscriber. If this setting is changed, the UNIQUE constraint will
not be replicated to the subscribers and an error will be raised when the FILESTREAM
column is replicated.

The current schema replication settings can be reviewed in the Subscription Options
page of the Publication Properties dialog box: right-click on the publication and select
Properties, and then select the Subscription Options tab. The Schema Replication
section is at the bottom of the property table (Figure 10-3).

359

Chapter 10: Integrating FILESTREAM with other SQL Server Features

 Figure 10-3:	 Setting the Schema Replication option.

We can also set this option by running the following replication stored procedures:

•	 for merge replication – sp_helpmergepublication

•	 for transactional replication (with or without updatable
subscriptions) – sp_helppublication.

One of the columns returned by these stored procedures is replicate_ddl. If the
publication is configured to replicate schema changes, the value in this column will be 1;
otherwise, it will be 0.

We can use the replication stored procedures to change the replicate_ddl setting:

•	 for merge replication – sp_changemergepublication

•	 for transactional replication (with or without updatable
subscriptions) – sp_changepublication.

360

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Listing 10-2 shows how to set this option to true using T-SQL for a merge publication.

EXEC sp_changemergepublication
 @publication = 'northpole',
 @property = N'replicate_ddl',
 @value = 1,
 @force_invalidate_snapshot = 0,
 @force_reinit_subscription = 0;

Listing 10-2:	 T-SQL script to update the replicate_ddl option of a publication.

MSDN documentation says that, if a UNIQUE constraint has been added manually and
you wish to remove replication, the UNIQUE constraint should be removed first. If the
UNIQUE constraint is not removed before attempting to drop the publication, the drop
operation will fail. I could not replicate this behavior during my testing, but keep this in
mind while replicating FILESTREAM columns.

Managing the FILESTREAM replication flag using
T-SQL

In the previous section we learned that a FILESTREAM column can be replicated
with or without the FILESTREAM attribute. Then we saw how to change the
configuration to replicate the FILESTREAM attribute or disable the replication of
the FILESTREAM attribute using the SSMS dialog boxes. Here, we examine how the
FILESTREAM replication flag can be managed using T-SQL; in other words, how to
enable and disable the replication of the FILESTREAM attribute using the replication
system stored procedures.

361

Chapter 10: Integrating FILESTREAM with other SQL Server Features

The configuration settings of any article that is part of a publication can be changed using
the stored procedures:

•	 for merge replication – sp_changemergearticle

•	 for transactional replication (with or without updatable subscriptions)
– sp_changearticle.

Both of these stored procedures accept the schema_option parameter; this parameter
is a bitmap value, where every bit (or "flag") in this parameter represents the status of a
specific configuration setting, one of which determines whether or not SQL Server will
replicate the FILESTREAM attribute. The value returned for this parameter is the bitwise
OR product of one or more of the values of these bits.

To replicate a FILESTREAM column along with the FILESTREAM attribute, the bit
represented by 0x100000000 should be set; to disable replication of the FILESTREAM
attribute, this bit should be cleared, being careful not to set or clear any bits other than
the intended one.

The recommended way to change the FILESTREAM replication flag is as follows:

•	 read the existing value of the schema_option configuration setting

•	 set or clear the FILESTREAM replication flag (0x100000000)

•	 write the modified configuration value back to the publication.

Read the current configuration setting

The first step is to read the current value of the schema_option configuration setting,
using either the sp_helpmergearticle system stored procedure for merge replication
or sp_helparticle for transactional replication, as shown in Listing 10-3.

362

Chapter 10: Integrating FILESTREAM with other SQL Server Features

-- Look for the previous settings. Run sp_helparticle and
-- look for the "schema_option" column.
exec sp_helparticle 'northpole', 'items'

Listing 10-3:	 Querying the current settings of an article in a transactional publication.

Read the value of the schema_option column from the output of this statement.
This can be automated by storing the output of the stored procedure in a temp
table and reading from that temp table. The default value of the schema_option is
0x000000000803509F.

Setting the FILESTREAM replication flag

Having retrieved the current configuration value of the schema_option setting, we can
go ahead and set the FILESTREAM replication flag. First, we can determine the current
status of the FILESTREAM flag by performing a bitwise AND operation on the current
schema_option configuration value returned by Listing 10-3, as shown in Listing 10-4.

DECLARE @val BIGINT
-- Assume that the current value is 0x000000010803509F
SELECT @val = 0x000000010803509F

-- Check whether FILESTREAM replication flag is enabled
IF @val & 0x100000000 <> 0
 PRINT 'FILESTREAM option is ON'
ELSE
 PRINT 'FILESTREAM option is OFF'

Listing 10-4:	 Checking whether the FILESTREAM replication flag is currently enabled.

Having determined the current status of the FILESTREAM flag, you can set or clear the
flag as required. As previously mentioned, the FILESTREAM replication setting is turned
on by setting the appropriate bit in the schema_option bitmap value. A specific bit on a
byte (or byte stream) can be turned on by performing a bitwise OR operation. However, a
bitwise operation cannot be performed on a VARBINARY value, so we have to start with a

363

Chapter 10: Integrating FILESTREAM with other SQL Server Features

BIGINT value, perform the required bitwise operation and then convert the new value to
a VARBINARY so that a string representation of the hex value can be created from that, as
shown in Listing 10-5.

DECLARE
 @options VARBINARY(8),
 @prev BIGINT

-- Set the flag to replicate FILESTREAM flag using a bitwise OR
-- We'll assume that the previous value is 0x000000000803509F
SELECT @prev = 0x000000000803509F

SELECT @prev = @prev | 0x100000000
SELECT @options = CAST(@prev AS VARBINARY(8))
SELECT @options
-- Original Value: 0x000000000803509F
-- New Value : 0x000000010803509F
-- Note the flag : ---------^--------

Listing 10-5:	 Turning the FILESTREAM replication flag on by performing a bitwise OR operation.

To turn off the FILESTREAM replication flag, we need to run the reverse operation and to
clear a specific bit in the configuration value using a bitwise NOT operation. Listing 10-6
shows how to do this.

DECLARE
 @options VARBINARY(8),
 @prev BIGINT

-- Clear the FILESTREAM repl flag using a bitwise NOT operation
-- We'll assume that the previous value is 0x000000010803509F
SELECT @prev = 0x000000010803509F

SELECT @prev = @prev ^ 0x100000000
SELECT @options = CAST(@prev AS VARBINARY(8))
SELECT @options
-- Original Value: 0x000000010803509F
-- New Value : 0x000000000803509F
-- Note the flag : ---------^--------

Listing 10-6:	 Turning the FILESTREAM replication flag off by performing a bitwise NOT operation.

364

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Writing back the modified configuration value

The final step is to write the modified configuration value back to the publication,
using either the sp_changemergearticle stored procedure for merge replication
or sp_changearticle for transactional replication. This is a little more complicated
than you might think, since the schema_option parameter is an NVARCHAR parameter,
which expects a hex representation of the configuration value.

Creating the string representation of a hex value is a little tricky, too. One method is to
use the XML data type methods; Listing 10-7 shows how to use the xs:hexBinary()
function to build a string representation of a hex value.

DECLARE @optInt BIGINT

-- Assume that the original value is 0x000000000803509F
SELECT @optInt = 0x000000000803509F

-- Turn ON the FILESTREAM replication flag
SELECT @optInt = @optInt | 0x100000000

-- Build a VARBINARY(8) value from the INT value
DECLARE @optHex VARBINARY(8)
SELECT @optHex = CAST(@optInt AS VARBINARY(8))

-- Covert the VARBINARY value to a hex string
DECLARE @optNv NVARCHAR(30)
SELECT @optNv = master.dbo.fn_varbintohexstr(@OptHex)
SELECT @optNv
--returns '0x000000010803509F'

Listing 10-7:	 Building a string representation of a hex value.

Having built an NVARCHAR value from the modified schema_option configuration
value, we can go ahead and execute the replication stored procedures to write the value
back to the publication, as shown in Listing 10-8.

365

Chapter 10: Integrating FILESTREAM with other SQL Server Features

exec sp_changearticle
 @publication = N'northpole',
 @article = N'Items',
 @property = N'schema_option',
 @value = @optNv,
 @force_invalidate_snapshot = 1,
 @force_reinit_subscription = 1

Listing 10-8:	 Writing back the modified schema_option value into the publication.

Impact of FILESTREAM replication configuration changes

Changing the FILESTREAM replication flag requires regenerating a new replication
snapshot and reinitializing all the subscribers. Turning the FILESTREAM replication flag
off is relatively harmless, but turning it on needs some careful thought.

When you turn the FILESTREAM replication flag on:

•	 any SQL Server 2005 subscribers to the publication will break; a publication cannot
be replicated to SQL Server 2005 subscribers if the FILESTREAM replication flag is
turned on

•	 any SQL Server 2008 subscribers will break if the subscription database is not
FILESTREAM enabled and does not have a default FILESTREAM filegroup.

Replication log reader and the FILESTREAM garbage
collector

As discussed in Chapter 7, SQL Server does not allow in-place updates of FILESTREAM
values. If you attempt to modify a FILESTREAM value either using T-SQL or using the
streaming APIs, SQL Server creates a completely new copy of the FILESTREAM data file

366

Chapter 10: Integrating FILESTREAM with other SQL Server Features

with the modified value. The old file stays around in the FILESTREAM data container
until the garbage collector steps in and deletes it.

Every FILESTREAM operation is linked to an LSN in the database transaction log. The
garbage collector will remove a file marked for garbage collection only when the trans-
action log is truncated past the LSN that created the FILESTREAM garbage file.

When a FILESTREAM database is published, the transaction log cannot be truncated until
the replication log reader agent reads the information from the transaction log. This can
delay the FILESTREAM garbage collection, because the garbage collector cannot delete
the files until the transaction log is truncated.

It is therefore possible that you will notice FILESTREAM garbage files lying around for a
longer period if the FILESTREAM columns are replicated and the replication log reader
agent does not run frequently.

FILESTREAM and synchronization methods

It is important to note that, if a publication includes tables having FILESTREAM columns,
the snapshot synchronization methods offered by SQL Server Enterprise Edition cannot
be used.

SQL Server Enterprise Edition provides two efficient synchronization methods for
building the replication snapshot, namely database snapshot and database snapshot
character, which generates the snapshot based on a database snapshot, resulting in no
locks being applied on the tables when the replication snapshot is being created. Database
snapshots cannot include FILESTREAM filegroups (explained later in this chapter) and
therefore, if the publication includes FILESTREAM columns, snapshot synchronization
methods are not supported.

367

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Replicating databases with multiple FILESTREAM
filegroups

Most real-world FILESTREAM databases will have more than one FILESTREAM
filegroup, and it is important to understand how replication works with multiple
FILESTREAM filegroups.

By default, when you replicate a FILESTREAM database, all FILESTREAM data will go
to the default FILESTREAM filegroup. However, we can configure the publication to
replicate FILESTREAM data to its own filegroup in the subscriber by setting another flag
in the schema_option configuration value.

In the previous section, we saw how to set or clear flags in the schema_option
configuration value. In a similar way, we can modify an article to replicate
FILESTREAM data to the same filegroups in the subscriber by turning on the
bit represented by 0x800000000.

Note that the replication process does not create FILESTREAM filegroups on the
subscriber database. If you use this option, you must create the required FILESTREAM
filegroups on the target database before applying the initial snapshot.

The option to set the FILESTREAM filegroup is available only through T-SQL. The SSMS
property page does not have this option.

368

Chapter 10: Integrating FILESTREAM with other SQL Server Features

FILESTREAM and the different replication types

Here, we examine briefly the behavior of FILESTREAM columns specific to each
replication type.

Transactional replication

FILESTREAM works beautifully with transactional replication (with or without updatable
subscriptions). For either type of transactional replication, setting up publishers and
subscribers for FILESTREAM columns is not much different from what we would usually
do for any other column.

One difference is the option that allows us to decide whether FILESTREAM columns
should be replicated with the FILESTREAM attribute, which we have already discussed.
Another is the option that determines whether the FILESTREAM columns should go to
the default FILESTREAM filegroup or to filegroups with the same name in the subscriber.
In the Article Properties dialog box (shown in Figure 10-1), the Copy filegroup associa-
tions property determines whether replicated data is stored in the default filegroups
at the subscriber or in the filegroups with matching names from the publisher. The
default value is False, meaning that the replicated data will be stored in the subscribers'
default filegroups.

Merge replication

Merge replication allows two-way synchronization of data between the publisher and
subscribers. The FILESTREAM-related configuration changes that you might need to
do when setting up a merge replication are pretty much the same as what you do for a
transactional replication.

369

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Aside from the additional options relating to FILESTREAM columns noted in the
previous section, one specific difference when using merge replication is that if you
have SQL Server 2005 (or earlier) subscribers, the option to replicate FILESTREAM as
VARBINARY(MAX) is not available in the SSMS wizard page (Figure 10-4) or the article
properties page.

Figure 10-4:	 Replicate FILESTREAM is not supported for merge replication.

If you select SQL Server 2005, you can still replicate FILESTREAM columns; the
publication will be configured to replicate FILESTREAM columns as VARBINARY(MAX)
columns and the SSMS property page will not allow you to change it. If you select
SQL Server 2000 and include FILESTREAM columns, the publication wizard will fail
because a FILESTREAM column cannot be replicated to a SQL Server 2000 database.

370

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Merge replication includes memory optimization, which is controlled by
the stream_blob_columns parameter of the sp_addmergearticle and
sp_changemergearticle stored procedures. Turning this option on while
replicating large BLOB values significantly improves replication performance. It
is therefore recommended to have this option turned on when you are replicating
FILESTREAM columns. It is especially important when the FILESTREAM column is
added to a table that is already published, because it can happen that this setting was
not turned on when the table was originally published. In such a case, you need to turn
this flag on explicitly.

The current status of this setting can be determined by running the replication stored
procedure sp_helpmergearticle and looking at the stream_blob_columns column
in the output.

When using merge replication with web synchronization over HTTPS protocol, the
maximum size of data values is limited to 50 MB. A runtime error will be raised if the data
size is larger than 50 MB.

Snapshot replication

Creating snapshot replication for FILESTREAM columns is very similar to what we have
seen with transactional replication. One immediate difference that you might notice is
that the max text repl size option is ignored by snapshot replication. This configu-
ration option is explained earlier in this chapter.

FILESTREAM and Log Shipping

Log shipping is a popular way of ensuring high availability of databases by sending
transaction logs to one or more secondary SQL Server servers at specified intervals.
SQL Server allows log shipping of FILESTREAM-enabled databases.

371

Chapter 10: Integrating FILESTREAM with other SQL Server Features

To configure log shipping of FILESTREAM-enabled databases, the secondary servers
must be running on SQL Server 2008 and have FILESTREAM enabled. Beyond this, one
point you might need to pay attention to is the connectivity between the primary and
secondary servers. Transaction logs shipped using log shipping will include FILESTREAM
data as well, which will make the shipped logs very big if your database deals with a lot
of FILESTREAM operations involving large BLOB values. It is also important to under-
stand that, when a FILESTREAM value is updated, SQL Server creates a new file with the
modified value. This new copy of the file will be included in the transaction log backup
which has an impact on the overall size of the transaction log backups.

FILESTREAM and Full-Text Indexing

Full-text indexing works with FILESTREAM columns in just the same way as with
VARBINARY(MAX) columns, with the only difference being that the 2 GB limit is not
applicable when indexing FILESTREAM columns.

Just like VARBINARY(MAX) columns that do not have the FILESTREAM attribute,
full-text indexing requires a column that stores the extension of the documents stored in
the FILESTREAM column. SQL Server looks at this column to determine the document
type, loads the appropriate IFilter, and indexes it.

More about full-text indexing

A detailed explanation of full-text indexing is beyond the scope of this book. For more information, I

would suggest you take a look at Books Online at: http://brurl.com/fs13.

For a quick look at how SQL Server indexes FILESTREAM columns using full-text
indexing, let's create a table with a few FILESTREAM data values, as shown in
Listing 10-9.

http://brurl.com/fs13

372

Chapter 10: Integrating FILESTREAM with other SQL Server Features

USE master
GO

IF DB_ID('NorthPoleFT') IS NOT NULL
 DROP DATABASE NorthPoleFT
GO

CREATE DATABASE NorthPoleFT ON PRIMARY (
 NAME = NorthPoleFT,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleFT.mdf'
), FILEGROUP NorthPoleFT_fs CONTAINS FILESTREAM(
 NAME = NorthPoleFT_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleFT_fs') LOG ON (
 NAME = NorthPoleFT_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleFT_log.ldf')
GO

Listing 10-9:	 Creating a sample database for full-text indexing.

We'll now create a table to store some office documents, which we'll use for testing the
full-text indexing (Listing 10-10).

USE NorthPoleFT
GO

CREATE TABLE [dbo].[Documents]
 (
 [DocID] [uniqueidentifier] ROWGUIDCOL
 NOT NULL ,
 [DocName] [varchar](128) NULL ,
 [DocType] [varchar](10) NULL ,
 [DocBody] [varbinary](MAX) FILESTREAM
 NULL ,
 CONSTRAINT [PK_Documents] PRIMARY KEY CLUSTERED ([DocID] ASC)
)
ON [PRIMARY] FILESTREAM_ON [NorthPoleFT_fs]

Listing 10-10:	 Creating a table with FILESTREAM columns.

373

Chapter 10: Integrating FILESTREAM with other SQL Server Features

And finally, let's insert two rows into this table: a Word document and an Excel file
(Listing 10-11). If you are following the example, ensure you create these files, or change
the paths to point to files that exist on your computer.

SELECT NEWID() ,
 'FILESTREAM Book - List of Chapters' ,
 '.xls' ,
 bulkcolumn
FROM OPENROWSET(BULK 'c:\temp\FILESTREAM Book - List of Chapters.xls',
 SINGLE_BLOB) AS x

-- Insert the data to the table
INSERT INTO Documents
 ([DocID] ,
 [DocName] ,
 [DocType] ,
 [DocBody]
)
 SELECT NEWID() ,
 'Chapter 10 – Integrating FILESTREAM' ,
 '.doc' ,
 bulkcolumn
 FROM OPENROWSET(BULK 'c:\temp\Chapter 10 - Integrating FILESTREAM.doc',
 SINGLE_BLOB) AS x

Listing 10-11:	 Loading documents into the FILESTREAM column of a table.

It is now time to create a full-text index catalog. This can be done either using the SSMS
wizard or using T-SQL (Listing 10-12).

CREATE FULLTEXT CATALOG
DocumentCatalog
AS DEFAULT ;

Listing 10-12:	 Creating a full-text catalog.

374

Chapter 10: Integrating FILESTREAM with other SQL Server Features

We can now create a full-text index on the DocBody column, in which we have stored the
content of the Office documents (Listing 10-13).

CREATE FULLTEXT INDEX ON
 dbo.Documents(
 DocName,
 DocBody TYPE COLUMN DocType
)
KEY INDEX PK_Documents
ON DocumentCatalog
WITH CHANGE_TRACKING AUTO;

Listing 10-13:	 Creating a full-text index.

Note that we have specified the column that stores the document extension using the
TYPE COLUMN clause. This allows SQL Server to understand the document type and use
the appropriate IFilter to index it.

That is all we need to do, so Listing 10-14 shows how to search for the keyword
Replication within the indexed documents.

USE NorthPoleFT
GO
SELECT *
FROM documents
WHERE CONTAINS (DocBody, 'Replication')

Listing 10-14:	 Searching a full-text index.

When creating a full-text index (using either T-SQL or the SSMS wizard), we can specify
the filegroup on which the index should be created. We cannot select a FILESTREAM
filegroup as the target filegroup for the full-text index. If a filegroup is not specified, the
default data filegroup of the database is used.

When using the SSMS wizard, don't select the FILESTREAM filegroup, otherwise the
full-text index creation will fail.

375

Chapter 10: Integrating FILESTREAM with other SQL Server Features

FILESTREAM and Database Snapshots

Database snapshot is a very interesting feature, introduced in SQL Server 2005, providing
a read-only static view of a database that exists in the same SQL Server instance. A
database can have multiple snapshots pointing to it, but all should reside on the same
SQL Server instance. Each database snapshot is transactionally consistent with the source
database as of the time at which the snapshot is created.

SQL Server allows the creation of a database snapshot of a FILESTREAM-enabled
database. However, the snapshot should not include the FILESTREAM filegroups. If we
attempt to include a FILESTREAM filegroup in the database snapshot, the operation will
fail with an error, as shown in Listing 10-15.

CREATE DATABASE NorthPoleSnapshot ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleSnapshot.mdf'
), FILEGROUP NorthPoleSnapshot_fs CONTAINS FILESTREAM(
 NAME = NorthPoleSnapshot_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleSnapshot_fs') AS SNAPSHOT
 OF NorthPole

/*
Msg 1815, Level 16, State 5, Line 1
The FILESTREAM property cannot be used with database snapshot files.
*/

Listing 10-15:	 Snapshot of a FILESTREAM-enabled database cannot include FILESTREAM filegroups.

The T-SQL code in Listing 10-16 creates a snapshot of a FILESTREAM database without
the FILESTREAM filegroups.

CREATE DATABASE NorthPoleSnapshot ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPoleSnapshot.mdf'
) AS SNAPSHOT OF NorthPole

376

Chapter 10: Integrating FILESTREAM with other SQL Server Features

/*
Command(s) completed successfully.
*/

Listing 10-16:	 Creating a database snapshot from a FILESTREAM-enabled database.

Be careful when querying the database snapshot of a FILESTREAM database. If a query
tries to read from the FILESTREAM columns, it will fail, because the FILESTREAM
filegroup is not available with the database snapshot, as shown in Listing 10-17.

USE NorthPole20100817
GO

SELECT * FROM Items
/*
Msg 601, Level 12, State 3, Line 1
Could not continue scan with NOLOCK due to data movement.
*/

Listing 10-17:	 Reading from FILESTREAM columns is not allowed when using a database snapshot.

With the limitation that the FILESTREAM columns are not available, FILESTREAM
database snapshots behave like the snapshots of regular databases. Listing 10-18 reads
values from non-FILESTREAM columns in the database snapshot.

USE NorthPole20100817
GO

SELECT ItemNumber, ItemDescription
FROM Items
/*
ItemNumber ItemDescription
-------------------- -------------------------
MS1002 Microsoft Keyboard
*/

Listing 10-18:	 Reading non-FILESTREAM columns from a database snapshot.

377

Chapter 10: Integrating FILESTREAM with other SQL Server Features

In most cases, it will be tedious to selectively exclude the FILESTREAM columns while
querying a database snapshot. It would have been much easier if SQL Server simply
returned NULL for the FILESTREAM columns instead of raising an error, but it is possible
that this was not done because one of the main features of the FILESTREAM storage is
the transactional consistency between the relational data and FILESTREAM data.

FILESTREAM and Change Data Capture

Change Data Capture (CDC) was introduced with SQL Server 2008. When this feature
is enabled, SQL Server keeps track of the modifications (inserts, updates, and deletions)
on the tables being tracked. The data capture takes place asynchronously (by reading the
transaction log), which eliminates the additional overhead you may have with a trigger-
based custom data capture framework. CDC can be configured to capture data modifica-
tions at the table level as well as at the column level.

More on CDC

For a more detailed discussion of CDC, see the Microsoft article, Tuning the Performance of Change Data

Capture in SQL Server 2008 at: http://brurl.com/fs25.

Books Online states that CDC does not support any of the new data types introduced in
SQL Server 2008. If you decide to enable CDC on your FILESTREAM-enabled tables, you
must exclude the FILESTREAM columns from the capture list.

So what happens if you enable CDC on a table that contains FILESTREAM columns?
CDC will capture those columns as VARBINARY(MAX) columns.

http://brurl.com/fs25

378

Chapter 10: Integrating FILESTREAM with other SQL Server Features

A warning on enabling CDC on FILESTREAM columns!

It may affect the performance of the system. In addition, it is an unsupported operation and you might

end up with a number of problems, for example, large-value type columns may generate a huge volume of

change data if those columns are frequently inserted/updated/deleted.

However, it will be interesting to see what happens when CDC is enabled on a
FILESTREAM column. To start with, let us create a FILESTREAM-enabled database
(Listing 10-19).

USE master
GO

IF DB_ID('NorthPole') IS NOT NULL
 DROP DATABASE NorthPole
GO

CREATE DATABASE NorthPole ON PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPole_fs') LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter10\NorthPole_log.ldf')
GO

USE NorthPole
GO

CREATE TABLE [dbo].[Items]
 (
 [ItemID] UNIQUEIDENTIFIER ROWGUIDCOL
 NOT NULL
 UNIQUE ,
 [ItemNumber] VARCHAR(20) ,
 [ItemDescription] VARCHAR(50) ,
 [ItemImage] VARBINARY(MAX) FILESTREAM
 NULL
)

379

Chapter 10: Integrating FILESTREAM with other SQL Server Features

GO

INSERT INTO Items
 (ItemID ,
 ItemNumber ,
 ItemDescription ,
 ItemImage
)
 SELECT NEWID() ,
 'MS1001' ,
 'Microsoft Mouse' ,
 bulkcolumn
 FROM OPENROWSET(BULK 'C:\temp\MicrosoftMouse.jpg',
 SINGLE_BLOB) AS x

Listing 10-19:	 Creating a FILESTREAM-enabled database to test CDC.

The next step is to enable CDC by running the CDC system stored procedures
(Listing 10-20).

USE NorthPole
GO

-- Enable CDC on the NorthPole database
EXEC sys.sp_cdc_enable_db

-- Enable CDC on the Items table
EXEC sys.sp_cdc_enable_table @source_schema = 'dbo',
 @source_name = 'items',
 @role_name = 'cdc_items',
 @supports_net_changes = 0

Listing 10-20:	 Enabling CDC on a table.

Note that you need to have the SQL Server Agent service running to have the CDC data
captured. If SQL Agent is not running, you will not see the data until you run SQL Agent
and the capture jobs populate CDC tables with the data. To verify if the SQL Server Agent
service is running, open Control Panel | Administrative Tools | Services. Scroll down the
list of services until you see the SQL Server Agent service for your instance (the instance

380

Chapter 10: Integrating FILESTREAM with other SQL Server Features

name is between parentheses). Check the value in the Status column. If it is blank, then
the service is stopped. Right-click the service name and select Start. If you want the
service to start automatically when Windows starts, modify the Properties of the service
and change the Startup type to Automatic.

Once CDC is enabled, we can make some data modifications and see the results in the
captured tables (Listing 10-21).

-- Update the content of the ItemImage column
UPDATE Items
SET ItemImage = CAST(1 AS VARBINARY(MAX))

-- Delete the record
DELETE FROM Items

Listing 10-21:	 Updating the FILESTREAM value to generate some CDC log entries.

Now, let's go to the CDC tables and see whether the data has been captured
(Listing 10-22).

DECLARE
 @LSNFrom BINARY(10) = sys.fn_cdc_map_time_to_lsn(
 'smallest greater than or equal',
 GETDATE() - 1) ,
 @LSNTo BINARY(10) = sys.fn_cdc_map_time_to_lsn(
 'largest less than or equal',
 GETDATE())

SELECT CASE [__$operation]
 WHEN 1 THEN 'Delete'
 WHEN 2 THEN 'Insert'
 WHEN 3 THEN 'Update (Old Values)'
 WHEN 4 THEN 'Update (New Values)'
 END AS Operation ,
 ItemNumber ,
 ItemDescription ,
 DATALENGTH(ItemImage) AS ImageSize
FROM cdc.fn_cdc_get_all_changes_dbo_Items(@LSNFrom, @LSNTo,
 'all update old') ;

381

Chapter 10: Integrating FILESTREAM with other SQL Server Features

/*
Operation ItemNumber ItemDescription ImageSize
------------------- ---------- --------------- ---------
Update (Old Values) MS1001 Microsoft Mouse 499988
Update (New Values) MS1001 Microsoft Mouse 4
Delete MS1001 Microsoft Mouse 4
*/

Listing 10-22:	 Querying the CDC logs for data modification history.

Note that the maximum replication text size configuration setting also affects CDC. We
examined this setting in detail when we discussed replication, earlier in this chapter.
When CDC is enabled on a table, if you try to insert or update a data value larger than the
size specified, the INSERT or UPDATE operation will fail.

To summarize, it is possible to enable CDC on FILESTREAM columns, but CDC will
capture the column as VARBINARY(MAX), not as FILESTREAM. Enabling CDC on
FILESTREAM columns is not recommended or supported. Before moving on, let's disable
CDC on the NorthPole database. Listing 10-23 shows how. It's not necessary to disable
CDC on individual tables first.

USE NorthPole
GO

-- Disable CDC on the NorthPole database
EXEC sys.sp_cdc_disable_db

Listing 10-23:	 Disabling CDC on a database.

382

Chapter 10: Integrating FILESTREAM with other SQL Server Features

FILESTREAM and Data Compression

SQL Server 2008 introduced page-level and row-level compression of relational data, but
it does not compress FILESTREAM data stored in the FILESTREAM filegroup(s) of the
database. On the other hand, SQL Server will allow you to store the FILESTREAM data
container on a compressed disk volume. However, as discussed in the Data and Backup
Compression for FILESTREAM Databases section in Chapter 8, documentation from the
Microsoft support engineers indicates that this is not a recommended configuration.

Another compression feature introduced in SQL Server 2008 is backup compression.
This feature allows you to take a compressed backup by issuing the WITH COMPRESSION
command in your backup script. Fortunately, SQL Server does compress the
FILESTREAM data when you take a compressed backup of the database, which can
possibly save a significant amount of backup storage space and shorten the backup time.

FILESTREAM and Transparent Data Encryption

One of the very interesting data security features added in SQL Server 2008 is
Transparent Data Encryption (TDE), enabling encryption of an entire database. The
encryption is transparent to application code; SQL Server takes care of encryption and
decryption at the storage level and you do not need to do anything other than enabling
this feature on the database.

However, note that TDE does not encrypt the FILESTREAM data stored in a
FILESTREAM database.

383

Chapter 10: Integrating FILESTREAM with other SQL Server Features

FILESTREAM and Database Mirroring

SQL Server does not allow mirroring of a FILESTREAM-enabled database. We cannot add
a FILESTREAM filegroup to a SQL Server database that is already mirrored. If a database
already has a FILESTREAM filegroup, SQL Server will not allow it to be mirrored.

What is very interesting is that the Mirroring option is still available in the property
page of a FILESTREAM-enabled database. The Mirroring page will guide us step by step
through configuring the principal, mirror, and witness servers, and we might even get
a message saying that mirroring has been successfully configured. However, when we
actually start mirroring, an error is raised, as shown in Figure 10-5.

Figure 10-5:	 Error when attempting to mirror a FILESTREAM-enabled database.

384

Chapter 10: Integrating FILESTREAM with other SQL Server Features

If we attempt the same using T-SQL, SQL Server will generate the following error when
the SET PARTNER command is issued:

A database cannot be enabled for both FILESTREAM storage and Database Mirroring.

One of the reasons for not allowing mirroring of a FILESTREAM-enabled database
could be the excessive amount of FILESTREAM log data that might need to be
ransferred to the mirror server if a lot of FILESTREAM activity takes place on the
database. Since SQL Server does not allow in-place update of FILESTREAM data
values, every modification generates a new file, which has to be transferred to the
mirror server.

FILESTREAM and High Availability Disaster
Recovery

In SQL Server 2012, the new High Availability Disaster Recovery – Always On (HADRON)
feature does support creating highly available database nodes, even with FILESTREAM-
enabled databases. HADRON was designed to meet the high availability needs of a
wide variety of SQL Server users, and so allow other features that were being used for
high availability and disaster recovery (including replication, log shipping, and database
mirroring discussed earlier in this chapter) to focus on the problems they were designed
to solve.

385

Chapter 10: Integrating FILESTREAM with other SQL Server Features

Summary

This chapter focused on examining how FILESTREAM works with other popular SQL
Server features. Some of these features work well with FILESTREAM.

•	 FILESTREAM works very well with replication; FILESTREAM columns can be
replicated with or without the FILESTREAM attribute, and they can be replicated
as VARBINARY(MAX) columns to SQL Server 2005 subscribers.

•	 SQL Server supports log shipping of FILESTREAM-enabled databases. There is no
change in the configuration process except that you need to make sure that the target
SQL Server instances have FILESTREAM enabled.

•	 Full-text indexing works with FILESTREAM columns in a similar way to that of
VARBINARY(MAX) columns, but with the 2 GB limitation of data size removed.

However, some of them are only partially supported and a few of the very
interesting features introduced in SQL Server 2005 and SQL Server 2008 do
not support FILESTREAM at all.

•	 Database snapshots of FILESTREAM databases can be created. However, you
cannot include FILESTREAM filegroups in the database snapshot. When querying
the database snapshot, if you attempt to read from the FILESTREAM columns,
SQL Server will generate an error.

•	 Change Data Capture does not "officially" support FILESTREAM columns.
If you configure CDC on a FILESTREAM column, the data will be captured
as VARBINARY(MAX) columns. Enabling CDC on FILESTREAM columns is
not recommended.

386

Chapter 10: Integrating FILESTREAM with other SQL Server Features

•	 SQL Server does not allow mirroring FILESTREAM databases.

•	 Compressing data using row-level or page-level compression does not compress
FILESTREAM data.

•	 TDE does not encrypt FILESTREAM data.

However, Microsoft's commitment to providing first-class support for FILESTREAM
does show in the new SQL Server 2012 High Availability Disaster Recovery – Always On
feature. It can make FILESTREAM data highly available by copying it to secondary servers.

387

Chapter 11: FileTable

The addition of the FileTable feature in SQL Server 2012 heralded the first significant
change to FILESTREAM since its introduction in SQL Server 2008. A FileTable is basically
just a "normal" SQL Server table for storing FILESTREAM data, via a VARBINARY(MAX)
column called file_stream, but which also stores metadata regarding the underlying
files and directories. This allows Windows applications to access FILESTREAM data
exactly as if it were stored directly on the file system, and addresses the need to access the
FILESTREAM data outside of the context of a SQL Server transaction. It also supports
features such as full-text and semantic search on FILESTREAM data.

In this chapter, we'll investigate how a FileTable is different from tables with
FILESTREAM columns and how to create and access FileTables. We'll also look behind
the covers of FileTable to understand better how the FILESTREAM feature is used to
implement FileTables.

Introduction to FileTable

FileTable is solidly based on many concepts found in the FILESTREAM feature. Just
like normal FILESTREAM tables, FileTables are meant to store BLOB data on an NTFS
volume, while keeping that data integrated with the relational data found in the SQL
Server database. FileTable also retains full compatibility with existing SQL Server tools,
services, and query options. However, unlike data stored in a traditional FILESTREAM
column, client applications do not require modifications in order to access data stored in
a FileTable. Contrast this to the requirement of using the Win32 or .NET streaming APIs
in client applications that use normal FILESTREAM tables, and you'll agree that FileTables
have an advantage.

388

Chapter 11: FileTable

FileTables can be accessed from any Windows application, including Windows Explorer.
This means that users can navigate to a file share that exists on the network and use that
file share like they would a traditional file share hosted on a file server. Recall that the file
share created for FILESTREAM purposes is visible when browsing to the SQL Server host
on the network, but it's not accessible.

Another significant difference between FILESTREAM and FileTable is that FileTables
support storing data in a hierarchical fashion using a folder structure. Data in a
FILESTREAM-enabled table is flat unless you include some form of hierarchy in the
table's design.

Beyond these differences, FILESTREAM data stored in FileTables has the same
benefits and restrictions as any other FILESTREAM data, including integrated backup
and recovery.

FileTable Concepts

Before we create a FileTable, let's review some of the concepts underlying the FileTable
feature, in order to achieve a good understanding of the FileTable architecture, including
its limitations.

Fixed schema

FileTables use a predefined and fixed schema, which defines, not only the characteristics
of the file data itself, but also metadata describing the underlying file or folder. Table 11-1
lists every field in the FileTable schema with a brief explanation of each one. For selected
columns, sample values are also provided.

389

Chapter 11: FileTable

Column Name Column Description
Sample
Value(s)

stream_id
This is the rowguidcol that is required of all tables
with FILESTREAM columns.

file_stream
The FILESTREAM data column that stores the actual
file contents.

0x (empty file)

NULL (folder)

Name The file or folder name.

path_locator

(PK)

The hierarchy identifier of the file or folder. See below
for more information about the hierarchy structure.

This is the primary key of the table.

parent_path_

locator

This is a persisted computed column that contains
the path_locator of the parent folder. The
computation uses the GetAncestor() function
on the path_locator field.

This must be a valid path_locator value and this
requirement is enforced using a foreign key constraint.

File and Folder Metadata Columns

file_type

This is a computed column that represents the type of
file based on the file extension. The computation uses
the undocumented GETFILEEXTENSION() T-SQL
function to determine the extension of the file.

This column is useful when configuring fulltext
indexes, as discussed later in this chapter.

390

Chapter 11: FileTable

Column Name Column Description
Sample
Value(s)

cached_file_

size

The size of the file in bytes. This is a computed
column. It uses the DATALENGTH() T-SQL function
to calculate the file size.

The Books Online documentation notes that, in
unusual circumstances, the value of this column can
get out of sync. The T-SQL DATALENGTH() function
will always return the correct file size in bytes.

NULL for folders

≥ 0 for files

creation_time

The date and time the file was created, which can be
set by Windows APIs.

Like the next two "_time" fields below, it is stored as
a datetime2(4) value, which means the time zone
offset is included in the value.

last_write_

time

The date and time the file contents were last updated.
Like creation_time and last_access_time, this
value can also be set by Windows APIs and thus may
not reflect the actual time.

last_access_

time

The date and time the file contents were last accessed.

Just like this metadata attribute on the NTFS file
system, it is important to note that it would be
accessing an application that is responsible for
updating this value. Many applications do not
change this value when opening a file.

is_directory Indicates if the row refers to a folder instead of a file.
0 for files

1 for folders

391

Chapter 11: FileTable

Column Name Column Description
Sample
Value(s)

is_offline

Reflects the NTFS extended file attribute "offline."
When this attribute is set, it means that the file is only
available when working online. This attribute is best
left unmodified.

is_hidden Reflects the hidden attribute of the file system.

is_readonly Reflects the read-only attribute of the file system.

is_archive

Reflects the archive attribute of the file system.

Usually, the archive bit is reset by full and incremental
backup operations and set by the Windows APIs when
the file contents are changed.

It's important to note that when modifying the
file_stream value using T-SQL, the archive bit is
not set automatically by SQL Server.

is_system Reflects the system file attribute of the file system.

is_temporary Reflects the NTFS extended file attribute "temporary."

Table 11-1:	 Overview of the FileTable schema.

You'll notice that the majority of the columns in the schema are metadata columns. In
a traditional file system, this metadata would be stored in the file system's metadata
area (like the MFT for NTFS). This metadata is used by the SQL Server component that
exposes the FileTable's contents as a file share to set the file and folder attributes. They
do not influence how the files can be used. For example, if the is_readonly bit is set
to 1, it does not mean that SQL Server will enforce that the file contents cannot be
changed. These metadata attributes are only present to provide compatibility with the
NTFS file system.

392

Chapter 11: FileTable

In addition to the predefined, fixed schema of FileTables, several additional database
objects are created when creating FileTables. These objects include DEFAULT
constraints to set appropriate values for many of the metadata columns in the FileTable,
CHECK constraints to ensure that no invalid column values can be added (such as a
non-NULL file_stream column if the row refers to a folder and not a file) and UNIQUE
constraints to ensure that each full path is unique. There is even a foreign key for the
parent_path_locator column to ensure that it refers to a valid folder.

Creating folder structures using the HIERARCHYID
data type

FileTable supports folder structures with a maximum depth of 15 subfolders. Even though
a maximum of 15 subfolders is supported, you will probably create a maximum of 14
subfolders, because it's not possible to create a file in the 15th level subfolder (as it would
create a 16th level item).

The folder structure is implemented using the HIERARCHYID feature introduced with
SQL Server 2008. While a complete discussion of the HIERARCHYID data type is beyond
the scope of this book, it is valuable to review some of the concepts and basic queries that
can be performed using HIERARCHYID fields.

In a FileTable, the primary key is a field of type HIERARCHYID and even though it's easy
to query the parent of a given HIERARCHYID value, the parent in the hierarchy is stored
in the parent_path_locator field. To keep this discussion focused on the basics of
HIERARCHYID, and since we have yet to discuss how to create FileTables, we'll use a
sample table that does not actually contain any FILESTREAM data, but just the hierarchy
structure and a name field, as shown in Listing 11-1.

393

Chapter 11: FileTable

USE NorthPole
GO

CREATE TABLE Hierarchy
 (
 path_locator HIERARCHYID NOT NULL
 PRIMARY KEY CLUSTERED ,
 parent_path_locator AS (CASE WHEN path_locator.GetLevel() = 1
 THEN NULL
 ELSE path_locator.GetAncestor(1)
 END)
 PERSISTED
 FOREIGN KEY REFERENCES Hierarchy (path_locator) ,
 name NVARCHAR(255) NOT NULL
)

Listing 11-1:	 Create a sample hierarchy in SQL Server.

The script creates a new table containing three fields with names also found in
FileTables. The path_locator is the primary key, and the parent_path_locator
is a computed column. In addition, the parent_path_locator is also a foreign key
which references the primary key of the same table. This is to ensure we cannot add a
child for a non-existing parent. The name is the would-be name of the file or folder
stored in the FileTable.

Listing 11-2 demonstrates how a new row can be added to the Hierarchy table. It is up
to the application to create the HIERARCHYID values. A HIERARCHYID can be written
as a string representation, whereby each level in the hierarchy is separated using '/'.
A HIERARCHYID value always starts and ends with a forward slash.

INSERT INTO Hierarchy
 (path_locator, name)
VALUES ('/1/', '1.txt')

Listing 11-2:	 Adding a row to the hierarchy.

394

Chapter 11: FileTable

When querying the table contents (Listing 11-3), you find that a HIERARCHYID is a
binary type. Using a simple CAST, we can get back the string representation of the
HIERARCHYID.

SELECT path_locator ,
 CAST(path_locator AS NVARCHAR) 'path' ,
 parent_path_locator ,
 name
FROM Hierarchy
/*
path_locator path parent_path_locator name
------------ ---- ------------------- -----
0x58 /1/ NULL 1.txt
*/

Listing 11-3:	 Querying a HIERARCHYID.

The value of parent_path_locator is NULL because this row was added at the first
level. Listing 11-4 shows how to add a row at the second level. The updated output of the
SELECT statement from Listing 11-3 is also shown.

INSERT INTO Hierarchy
 (path_locator, name)
VALUES ('/1/1/', '1.1.txt')
/*
path_locator path parent_path_locator name
------------ ----- ------------------- -------
0x58 /1/ NULL 1.txt
0x5AC0 /1/1/ 0x58 1.1.txt
*/

Listing 11-4:	 Adding a row to a second level.

Assuming the name 1.txt refers to a file, the preceding code would be nonsensical in a
FileTable scenario, because file system files cannot have children. Also, in FileTables, you
would not determine the path_locator yourself; rather, it is the result of the position
of the file or folder in the file system's structure.

395

Chapter 11: FileTable

More on using hierarchies

Books Online has a tutorial available at http://brurl.com/fs14.

Root folder

A single SQL Server instance can host multiple FileTables, across multiple databases, so
each database must be assigned a root folder. This root folder becomes a child folder of
the FILESTREAM share on the SQL Server host. By default, the name of the file share is
MSSQLSERVER (or the SQL Server instance name, if you use named instances).

The root folder must be unique across all databases in the same instance, and can be
configured from SSMS or using T-SQL. Using SSMS, simply right-click on the database's
node in Object Explorer and click Properties and then, in the Database Properties dialog
box, go to the Options page, locate the FILESTREAM Directory Name option and type
in the folder name.

Listing 11-5 shows how to set the root folder using a T-SQL script. Note that the
folder name can be different from the database name, but it must be a valid Windows
folder name.

-- Configure the root folder
ALTER DATABASE NorthPole SET FILESTREAM (DIRECTORY_NAME = 'NorthPole')

Listing 11-5:	 Set the FileTable root folder name using T-SQL.

This method can also be used to change the name of the root folder, if previously set. This
change takes effect immediately, although it requires that all active connections to the
database are closed. You cannot reset the FILESTREAM directory name to NULL as long as
there are FileTables in the database.

http://brurl.com/fs14

396

Chapter 11: FileTable

Non-transactional access

Transactional access to the BLOB data stored in a FileTable is supported like it is with
any FILESTREAM column. The ability to access the files and folders in the FileTable using
traditional Windows API-based applications requires that access is also allowed outside
the bounds of a SQL Server transaction. Access to traditional FILESTREAM columns still
requires a transaction context for reading and writing, even in SQL Server 2012, and this
is regardless of any database-level configuration for non-transactional access.

This non-transactional access is configured at the database level, meaning that we can
have multiple databases on the same SQL Server instance with different configurations
for non-transactional access of FileTables. The options for non-transacted access are:

•	 Off – Non-transactional access to FileTables is not allowed; any access to the
FILESTREAM data stored in all FileTables in the database follows the same rules as
regular FILESTREAM.

•	 ReadOnly – Non-transactional access to FileTable data is only possible for reading;
client applications cannot create or modify files and folders unless they use traditional
FILESTREAM techniques.

•	 Full – Non-transactional access to FileTables is allowed for both reading and writing;
client applications can open and save files and create folders using the standard
Windows or .NET file I/O APIs.

Internally, SQL Server will use the Read Committed transaction isolation level to enforce
locking or concurrency semantics.

To configure non-transactional access using SSMS, open the Database Properties
window for the database in question, and in the Options page locate the FILESTREAM
Non-Transacted Access option and select the appropriate value as shown in Figure 11-1.

397

Chapter 11: FileTable

Figure 11-1:	 Setting non-transactional access level using SSMS.

After selecting the appropriate option, close the Database Properties dialog. SSMS will
warn you that, in order to change database properties, all connections to that database
must be closed. You must click Yes in order to save your changes. If you click No, the
Database Properties dialog is not closed, and you can cancel the changes instead.

To configure non-transactional access using a T-SQL script, refer to Listing 11-6.

-- Configure non-transactional access to FileTables in the current DB
ALTER DATABASE NorthPole SET FILESTREAM (NON_TRANSACTED_ACCESS = FULL)

Listing 11-6:	 Configuring non-transactional access using T-SQL.

The valid values for the NON_TRANSACTED_ACCESS are OFF, READ_ONLY and FULL, as
described previously.

While non-transactional access to FileTable data is a requirement for interoperability
with client applications that only use Windows file I/O APIs, there is also a risk of
consistency problems. For example, it is possible for a client application to "see" a file and
read the file attributes (but not read the file contents) while a transaction that is creating
the file is still in progress. Should the transaction roll back and the file be removed, the
application might be acting on incorrect information. I have not found a way to avoid this
possibility, although I did have to work hard to make it happen.

A noteworthy difference between non-transactional access and transactional access
is related to garbage files. Garbage files are not created when updating files using
non-transactional access. Rather, the original FILESTREAM data file is written to directly.

398

Chapter 11: FileTable

This allows for in-place (or partial) updates to the files, potentially resulting in significant
performance enhancements over other FILESTREAM scenarios. This enhancement
comes at the cost of transactional integrity. When a file is deleted using non-transactional
access, the FILESTREAM file will remain and follow the same rules for garbage collection
as other garbage files.

FileTable namespace

The namespace of a FileTable refers to its file and folder structure. In order to navigate
to a FileTable's root folder, you need to know the machine name, the instance-level
FILESTREAM share name, the database-level folder name and the FileTable-level folder
name. The root path can then be constructed like this:

\\servername\instance-share\database-directory\FileTable-directory

SQL Server 2012 provides several functions to obtain the correct names of the share and
folders. Assuming a default SQL Server instance with default FILESTREAM share name,
a database called NorthPole with default FILESTREAM directory name, and a FileTable
called Documents with a default FileTable directory name, the UNC path would be:

\\servername\MSSQLSERVER\NorthPole\Documents

In order to implement an NTFS-compatible structure in SQL Server tables (referred to
as "FileTable semantics" in Books Online), FileTable uses many constraints, computed
columns and defaults.

Constraints and computed columns can cause a lot of overhead if many operations
are performed on a FileTable in short order. You might be performing more operations
than usual if the namespace of the FileTable is being reorganized, such as when you are
moving files from one folder to another. Another example might be a bulk load operation.
On those occasions, you may consider disabling the constraints to achieve better

399

Chapter 11: FileTable

performance while these tasks are being completed. Disabling the constraints is accom-
plished by disabling the FileTable's namespace. You will need to re-enable the namespace
before the FileTable contents will be available again.

Before the FileTable's namespace will be re-enabled (and the contents be available using
Windows APIs), SQL Server will perform a consistency check on the FileTable. If the
consistency check fails, then the namespace will not be re-enabled and the inconsistency
must be fixed.

To disable a FileTable's namespace in SSMS, right-click on the FileTable, open the Table
Properties dialog box, and go to the FileTable page. Change the value of the FileTable
namespace enabled option to False.

The code in Listing 11-7 disables and then re-enables the FileTable namespace for the
Documents table. Barring a rogue DML operation that takes place between the disable
and enable operations, this simple action will not result in inconsistencies.

-- Disable the Documents FileTable namespace
ALTER TABLE Documents DISABLE FILETABLE_NAMESPACE
GO

-- Enable the Documents FileTable namespace
ALTER TABLE Documents ENABLE FILETABLE_NAMESPACE

Listing 11-7:	 Disabling and enabling a FileTable's namespace using T-SQL.

Since disabling the FileTable namespace disables constraints, this should not be done
without thoroughly considering the potential implications of data consistency problems.

400

Chapter 11: FileTable

FileTable security

FILESTREAM data can only be accessed in the context of SQL Server, so SQL Server
exercises control over who can access the data. For FILESTREAM columns, the same
permissions can be set as for other columns, thereby allowing or denying access to roles
or users.

SQL Server also maintains control over the FILESTREAM data that is stored in FileTables.
As such, an important restriction on the use of FileTables must be noted: SQL Server
security can work at the table and column level, but not at the row level. In FileTables,
each row is a file or folder and, as such, these cannot be secured individually (unlike with
NTFS permissions). It is not possible to create an access control list on a file or folder
stored in a FileTable, and Windows Explorer will not show the Security tab in the file or
folder properties dialog.

In order for a user to have access to FileTable data using Windows APIs, the
user's Windows logon account will have to be granted permissions on all columns
in the FileTable (or the user account will need to be a member of a role that has
such permissions).

It is possible to prevent users from performing certain tasks in a FileTable by modifying
the permissions on the FileTable. This is best accomplished by creating database roles,
such as FileTable_nodelete and FileTable_noinsert, to which you can then add
logins or other roles. If you have multiple FileTables, you may consider creating a role for
each set of FileTables with specific access restrictions.

Prevent creating and deleting files or folders

To prevent users from deleting files and folders, you can explicitly deny the Delete
permission on the FileTable(s). The affected logins will be able to access and modify the
files and folders in the FileTable as well as create new ones, but will not be able to delete

401

Chapter 11: FileTable

any files or folders, even those they created themselves. If a user attempts to delete a file
or folder, it will appear to succeed, but a simple refresh of the folder shows that the item
is still there. No error message is shown to the user. This, again, is a departure from the
way NTFS permissions are normally set up: the CREATOR OWNER of an object usually has
full control over that object, including delete permission.

Denying the Delete permission to users is effective only to prevent accidental deletion.
As we'll discover below, it's not possible to make files read-only on a user-by-user basis.
That means that a user with malicious intent can still destroy the contents of the file,
even if the file itself cannot be deleted.

It is also possible to prevent users from creating new files and folders in a FileTable by
denying the Insert permission in a similar fashion as for the Delete permission. When
a user attempts to create a new file or folder in the FileTable, they will receive an error
message that looks like the one below (Figure 11-2). This error message is unfortunately
not very polished.

Figure 11-2:	 Error message when attempting to create a new file or folder.

No read-only access

Unfortunately, it is not possible to provide read-only access to certain users or roles
while providing read and write access to others. When explicitly denying the Update
permission on the FileTable to a role or user, users are still able to open files and folders,
make changes and save those changes using Windows file I/O APIs. However, because the

402

Chapter 11: FileTable

Update permission is denied, the metadata fields in the FileTable do not get updated. So,
the last_write_time and cached_file_size values of that row in the FileTable
will not reflect accurate values. At the time of going to press, Microsoft confirmed that
this is a bug and that they intend to issue an update to address it.

It is possible that these shortcomings in the security features of FileTable will be a
deal breaker for some environments, and you will have to review these and discuss the
potential implications with the stakeholders.

Setting Up the Server for FileTable

FileTable is based on FILESTREAM, so the SQL Server machine and instance need to
be configured to support FILESTREAM. Specifically, the use of FileTables requires the
FILESTREAM access level to be set to allow remote streaming access. Complete details of
how to set up and verify FILESTREAM configuration are found in Appendix A.

It is also important to note that, just like FILESTREAM, to access FileTable data using the
Windows API, Windows authentication must be enabled for the SQL Server instance.

Creating a Database with Support for FileTable

In order to create a FileTable, the hosting database must be configured to support
FILESTREAM and FileTable. A complete discussion about creating databases with
FILESTREAM support is provided in Chapter 2.

In addition to support for FILESTREAM, the database must also have the FILESTREAM
Directory Name option set to a valid folder name. It is also most likely that you will
enable non-transactional access to the FileTables in your database. The T-SQL script in
Listing 11-8 creates a database that has support for FileTable enabled. Review the section
on FileTable Concepts, above, to learn how to configure the FileTable settings using SSMS.

403

Chapter 11: FileTable

-- If the 'NorthPole' exists, drop it
IF DB_ID('NorthPole') IS NOT NULL BEGIN
 DROP DATABASE NorthPole;
END

-- Create NorthPole database
CREATE DATABASE NorthPole ON
PRIMARY (
 NAME = NorthPole,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter11\NorthPole.mdf'
), FILEGROUP NorthPole_fs CONTAINS FILESTREAM(
 NAME = NorthPole_fs,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter11\NorthPole_fs')
LOG ON (
 NAME = NorthPole_log,
 FILENAME = 'C:\ArtOfFS\Demos\Chapter11\NorthPole_log.ldf')

-- Configure non-transactional access
ALTER DATABASE NorthPole SET FILESTREAM (NON_TRANSACTED_ACCESS = FULL)

-- Configure the root folder
ALTER DATABASE NorthPole SET FILESTREAM (DIRECTORY_NAME = 'NorthPole')

Listing 11-8:	 T-SQL script to create a database with FileTable enabled and configured.

If you have an existing database, you can verify its readiness to support FileTable
by querying the sys.database_filestream_options catalog view as shown in
Listing 11-9.

SELECT non_transacted_access, non_transacted_access_desc,
 directory_name
FROM sys.database_filestream_options
WHERE database_id = DB_ID('NorthPole')
/*
non_transacted_access non_transacted_access_desc directory_name
--------------------- -------------------------- --------------
2 FULL NorthPole
*/

Listing 11-9:	 Querying a catalog view to verify FileTable support.

404

Chapter 11: FileTable

If the directory_name column is NULL, then you will need to change that
option, using either SSMS or T-SQL. Both methods are discussed in the earlier
FileTable Concepts section.

Creating a FileTable

When we have a database that meets the prerequisites, we can create our first FileTable.

Create a FileTable using T-SQL

A FileTable has a fixed schema, so the T-SQL statement to create one is as simple as
shown in Listing 11-10.

USE NorthPole
GO

CREATE TABLE Documents AS FILETABLE

Listing 11-10:	 T-SQL statement to create a FileTable.

You'll notice there is no need to specify field names, but we specify a new clause: AS
FILETABLE. This clause indicates to SQL Server that the standard schema is to be used.

With the FileTable created, use Windows Explorer to navigate to the FileTable's folder,
using the path below. This path assumes that you have a default instance of SQL Server,
you did not change the FILESTREAM share name and you configured the FILESTREAM
directory name to be the same as the database name (NorthPole):

\\localhost\MSSQLSERVER\NorthPole\Documents

405

Chapter 11: FileTable

By default, the folder name of the FileTable is the table name. You can change the name of
the directory (which is a subfolder of the database's root folder discussed above) by adding
the FILETABLE_DIRECTORY option in the CREATE TABLE statement (Listing 11-11).

CREATE TABLE Documents AS FILETABLE
 WITH (FILETABLE_DIRECTORY = 'NorthPole Documents')

Listing 11-11:	 Creating a FileTable with a specific directory name.

If you need to change the directory name, you can use the ALTER TABLE statement in
Listing 11-12.

ALTER TABLE Documents SET (FILETABLE_DIRECTORY = 'Documents')

Listing 11-12:	 Change the directory name of a FileTable.

The directory name of a FileTable must be a valid Windows directory name, which means
that certain characters are not allowed. For example, a directory name cannot contain
the pipeline character (|). While it's probably not common, it is possible in SQL Server to
create a table with a pipeline character in the name. If you try to create a FileTable with
the name Documents|Confidential, you will receive an error message like the one below.

Msg 33402, Level 16, State 1, Line 1

An invalid directory name 'Documents|Confidential' was specified. Use a valid Windows

directory name.

At that point, you will need to decide if you want to change the table name to match the
requirements of Windows naming conventions or if you want to override the default
folder name using the FILETABLE_DIRECTORY option.

The FileTable data in a new FileTable will be stored on the default FILESTREAM filegroup
defined in your database. You may have a need to place the FileTable data on a specific
filegroup that is not the default filegroup in the database. Listing 11-13 shows how this can
be done.

406

Chapter 11: FileTable

-- Create a new FILESTREAM filegroup
ALTER DATABASE NorthPole
 ADD FILEGROUP NorthPole_fs2 CONTAINS FILESTREAM

-- Create a new FILESTREAM data container
ALTER DATABASE NorthPole
 ADD FILE (NAME = 'NorthPole_fs2',
 FILENAME = 'C:\ArtOfFS\Demos\ChapterX\NorthPole_fs2')
 TO FILEGROUP NorthPole_fs2

USE NorthPole
GO

-- Place the FileTable data on a specific FILESTREAM filegroup
CREATE TABLE Documents AS FILETABLE
 FILESTREAM_ON NorthPole_fs2

Listing 11-13:	 Creating a FileTable that uses a specific FILESTREAM filegroup.

You will notice the FILESTREAM_ON clause is the same clause you would use when
changing the FILESTREAM filegroup on a regular table.

Create a FileTable using SSMS

In other chapters, we have highlighted that it's not possible to create FILESTREAM
columns using SSMS. However, SSMS does offer some support for creating FileTables by
providing a shortcut menu entry and Create FileTable template code.

To create a FileTable using SSMS, right-click on the Tables node and select the New
FileTable item. If you already have a FileTable defined in the database, you can also
right-click on the FileTables node. SSMS will create a new query window and include a
Create FileTable template. Unfortunately, the default template requires a lot of work to
customize, including selecting the correct database to create the FileTable in as well as
replacing placeholder values in more than 20 locations.

407

Chapter 11: FileTable

It is possible to customize the template and reduce the number of placeholders that need
to be replaced. On a 64-bit system, the file containing the template can be found at:

C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Binn\
ManagementStudio\SqlWorkbenchProjectItems\Sql\Table\
Create FileTable.sql

After creating a precautionary backup, you can edit this file to your liking. For
example, you can remove the USE statement, change occurrences of the schema_
name placeholder to dbo and comment out the parts that set the optional values for
FILETABLE_DIRECTORY and FILETABLE_COLLATE_NAME.

Listing 11-14 shows a suggested Create FileTable template after the edits described above
are made.

-- ==
-- Create FileTable template
-- (customized 2012-01-06, Art of FILESTREAM)
-- ==

IF OBJECT_ID('dbo.<table_name>', 'U') IS NOT NULL
 DROP TABLE dbo.<table_name>
GO

CREATE TABLE dbo.<table_name> AS FILETABLE
-- WITH
-- (
-- FILETABLE_DIRECTORY = '<file_table_directory_name>',
-- FILETABLE_COLLATE_FILENAME = <file_table_filename_collation, sysname,
database_default>
--)
GO

Listing 11-14:	 Create FileTable template with fewer placeholders.

408

Chapter 11: FileTable

Work with a FileTable using SSMS

While SSMS has only limited support for creating FileTables, there are some commands
and elements that have been added to the GUI that can come in handy while working
with FileTables.

SSMS lists FileTables in their own node in the Object Explorer tree. It lists all the
FileTables in the database and provides a context menu that contains the New FileTable
entry. When drilling down into the FileTables node, it acts just like the Tables node
(Figure 11-3).

Figure 11-3:	 FileTables node in SSMS (trimmed full column list for brevity).

Using SSMS, it is possible to change the FileTable's directory name. This change takes
effect immediately, but can only be made if no files are open in that FileTable. To change
the directory name, right-click on the FileTable and select Properties, then in the
Table Properties dialog, go to the FileTable page and change the value of the FileTable
directory name property to a valid Windows directory name (Figure 11-4).

409

Chapter 11: FileTable

Figure 11-4:	 Changing the FileTable directory name using SSMS.

To help you quickly open a Windows Explorer window showing the contents of the
FileTable, right-click on the FileTable name and select Explore FileTable Directory. This
menu option will be grayed out if the database is not set up for non-transactional access
or if the FileTable's namespace is disabled.

Adding constraints to the FileTable

It's not possible to create constraints on the FileTable at creation time, but you can add
constraints later, using an ALTER TABLE statement. Note that you cannot remove the
constraints that are created by default.

By way of example, let's add a constraint to the FileTable that would prevent files from
being created at the FileTable root folder. A constraint like this might be useful if you
have defined folders in the FileTable and you do not want users to create files unless
they're in one of those subfolders. Listing 11-15 shows how to define such a constraint
on a FileTable.

ALTER TABLE Documents
 ADD CONSTRAINT CK__Documents__NoFilesInRoot
 CHECK
 (is_directory = 1 OR path_locator.GetLevel() > 1)

Listing 11-15:	 Creating a constraint on a FileTable.

410

Chapter 11: FileTable

In Listing 11-15, the constraint checks that either the value of the is_directory column
is 1 (we'll allow creating folders at any level) or that the level in the hierarchy is greater
than 1. This will prevent users from creating files at the FileTable's root, but not at any
other level. When attempting to create a new file at the root, the error message shown in
Figure 11-5 will appear.

Figure 11-5:	 Error message when attempting to create a file at Level 1 after applying a constraint.

If you have plans to apply the same constraint to multiple FileTables in the database, it
would be a good idea to extract the logical expression into a user-defined function. For
now, however, let's remove this constraint from the table (Listing 11-16).

ALTER TABLE Documents
 DROP CONSTRAINT CK__Documents__NoFilesInRoot

Listing 11-16:	 Drop a user-defined constraint from a FileTable.

Restrictions on creating FileTables

While most operations that can be performed on regular tables can be performed on
FileTables, there are a few restrictions. Foremost, of course, is the notion that the schema
is predefined and fixed. You cannot add or remove columns from a FileTable. Usually, it's
possible to work around that limitation by defining another table and creating a one-to-
one relationship between the FileTable and the table containing the additional data.

411

Chapter 11: FileTable

Furthermore, it's also not possible to create a FileTable in the tempdb database or create
a FileTable as a temporary table (which is expected, based on the first restriction, as
temporary tables are created in tempdb). That restriction also applies to FILESTREAM in
general, as it's not possible to modify tempdb to add a FILESTREAM filegroup.

Accessing a FileTable with Windows Explorer and
Other Client Applications

Once you have created a FileTable, it is ready for use. If you intend to use your FileTable
to store data used by an application that is not FILESTREAM-aware (i.e. the application
will not be modified to support transactional access to the files), you do not need to take
any further action.

By way of example, let's create a new file and folder and examine the effect in SQL Server.
Using Windows Explorer, navigate to the file share where your FileTable is located. If you
followed the example from Listings 11-8 and 11-10, this will be your path name:

\\localhost\MSSQLSERVER\NorthPole\Documents

Alternatively, you can also right-click on the FileTable in SSMS and choose the
Explore FileTable Directory from the shortcut menu.

Creating files

At this time, the folder should be empty. Right-click the right pane and select
New | Text Document. Provide a filename for the new file, such as Letter.txt
and confirm.

412

Chapter 11: FileTable

Now open (or return to) SSMS and select all rows from the Documents FileTable. You
will find that one row is returned. You can verify the value of the name column to make
sure the correct file is returned. Also note the value of the cached_file_size column,
which should read 0 (as the file is empty). A full discussion of the FileTable schema is
included above.

It is possible that you set a value for the FILESTREAM Non-Transacted Access to
ReadOnly. In that case, you will not be able to create new files. Windows Explorer will
show an error message like the one in Figure 11-6.

Figure 11-6:	 Windows Explorer error message if FILESTREAM

Non-Transacted Access is set to ReadOnly.

The error message states that destination folder access is denied, but there really isn't a
permission issue. It may be more constructive to think about it as a configuration issue.

If you successfully created the new text file, open it in your favorite text editor (which is
likely not FILESTREAM-aware!) and add some text to the file. Use the Save command in
your text editor to save your changes. Rerun the SELECT query in SSMS and review the
results. You will find that the cached_file_size column has been updated to reflect
the new file size. Close the text editor.

413

Chapter 11: FileTable

Creating folders

One of the major benefits of FileTable is the ability to store the data hierarchically,
meaning in folders. Let's create a new child folder and examine the effect in the FileTable.
In Windows Explorer, right-click in the right pane, select New | Folder, provide a name
for the new folder and confirm. Rerun the SELECT statement to retrieve all rows from
the FileTable, and note that you now have two results. The second row is your folder.
The best way to distinguish between a folder and a file row in a FileTable is using the
is_directory field. The value is 0 for a file and 1 for a folder. You can also check for a
NULL in the file_stream column.

Memory-mapped files

One major caveat of FileTable is that memory-mapped files are not supported.
A discussion of memory-mapped files is beyond the scope of this text, but suffice
it to say that some popular Windows utilities (including Notepad and Paint)
use it when opening files on the local system, even if the path is a UNC path
(like \\systemname\MSSQLSERVER\NorthPole). While those utilities likely do
not make or break a FileTable adoption, let's look at a workaround.

If you created a new, zero-length text file, you will be able to successfully open the file
with Notepad, make changes to it, and save it. However, once you close the file and then
try to reopen it, you will receive this error message from Notepad:

The request is not supported.

Notepad will no longer be able to open the file. This is because Notepad uses memory-
mapped files. You can work around this issue by mapping a drive letter to the
FILESTREAM share. Also, when accessing the files from another host than the SQL Server
machine, memory-mapped files are not used.

414

Chapter 11: FileTable

Empty database folder

If a user account has only been granted select, insert, update and/or delete permission on
the FileTables in a database, the shared folder for that database will appear empty when
browsing to it. When typing in the name of the folder associated with a FileTable, you can
navigate further.

As an example, consider John, who has been given select permission only on the FileTable
in the database NorthPole on the server SQL01. (Assume the FILESTREAM directory
name and the FileTable directory name are the same as the database and table names).

When John uses Windows Explorer to navigate to the database's folder at \\SQL01\
MSSQLSERVER\NorthPole, the folder will appear empty.
By appending the folder name to the path \\SQL01\MSSQLSERVER\NorthPole\
DocumentStore, John will have access to the FileTable.

This symptom is caused by the fact that the user was not granted the View
definition permission on the FileTable. The commonly used built-in database roles
db_datareader and db_datawriter are also not granted those permissions.

So, in order for your users to have a fluent experience while accessing FileTable shares,
they should be given the View definition permission.

Programming FileTable

In this section, we'll cover how to read and update FileTable data using application code.
We'll use both T-SQL and the .NET file I/O APIs to read, create, modify, and delete files
and folders in a FileTable.

415

Chapter 11: FileTable

Adding rows using T-SQL

Although it will probably be uncommon to add rows to a FileTable using T-SQL, it is
possible to do so. Applicable scenarios may include hydrating default rows to a new
database instance or, perhaps, the creation of new folders using your application's
custom GUI.

In the next few examples, we will prepare our Documents FileTable for use by an order
entry application. We will create some files and folders in the table by using the T-SQL
INSERT statement and specifying values for the required fields that don't have default
values. The file we will create in the root of the FileTable is a README file, which one
might use to inform end-users about the proper use of the file share.

Listing 11-17 shows the minimum required T-SQL code to create a new file in our
Documents FileTable. Successfully executing this statement requires that you dropped
the user-defined constraint using the code in Listing 11-16.

INSERT INTO Documents ([name], file_stream)
VALUES ('ReadMe.txt', 0x)

Listing 11-17:	 Creating an empty file in the root folder using T-SQL.

There is no default value defined for the file_stream column, and a NULL is not
allowed unless the row refers to a folder, so we specify 0x to create a zero-length file.
Listing 11-18 shows how to create a new folder using T-SQL. The folder will be used
to store documents about each order that is placed. In a real-world scenario, this
might include an image of the shipping label. In our scenario, we will use only dummy
file contents.

INSERT INTO Documents ([name], is_directory)
VALUES ('Order Files', 1)

Listing 11-18:	 Creating a new folder in the FileTable root folder using T-SQL.

416

Chapter 11: FileTable

We may also need to create a new file in a subfolder. We must ensure that we create
this new file in a valid hierarchy, which means that we must include the folder's
path_locator in the path_locator of this new record. As an example, Listing 11-19
shows a simplified view of the structure we just created using Listing 11-17 and
Listing 11-18.

SELECT CAST(path_locator AS VARCHAR(4000)), name,
 path_locator.GetLevel() AS 'level', is_directory
FROM Documents

/*
path_locator name level is_directory
------------ ----------- ----- ------------
/1.1.1/ ReadMe.txt 1 0
/2.2.2/ Order Files 1 1
*/

Listing 11-19:	 Querying the contents of the Documents table.

While the path_locator values you will find are more complex, the point is to
illustrate that the file and the folder have a different hierarchyid (path_locator)
value, but that the level in the hierarchy is both 1. The new file we want to add should
have a path_locator and level value like the ones shown in Table 11-2.

path_locator name level

/2.2.2/3.3.3/ NewFile.txt 2

Table 11-2:	 path_locator value for the new file.

We must create the new file record as a child of the Order Files folder, so we cannot
use the DEFAULT constraint on the path_locator column to let SQL Server create a
path_locator value located in the FileTable root. Instead, we must first find the parent
folder's path_locator value and construct a new path_locator value that is a child
value of the parent folder's path_locator. Listing 11-20 shows how this can be done.

417

Chapter 11: FileTable

-- Find the path_locator value for the parent directory
DECLARE @parent_path_locator HIERARCHYID

SELECT @parent_path_locator = path_locator
FROM Documents
WHERE name = 'Order Files'

 AND path_locator.GetLevel() = 1
 AND is_directory = 1

-- Create a new path_locator value that places the new file
-- as a child of the parent directory
DECLARE @path_locator VARCHAR(675)
SET @path_locator = @parent_path_locator.ToString() +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 1, 6))) + '.' +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 7, 6))) + '.' +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 13, 4))) + '/'

-- Insert a new record, specifying the new path_locator
INSERT INTO Documents (name, file_stream, path_locator)
VALUES ('OrderFile.txt', 0x, @path_locator)

Listing 11-20:	 Create a zero-length file in a subfolder using T-SQL.

We are creating the HIERARCHYID value by calling the NEWID() function three times.

•	 Firstly, extracting a specific number of bytes from it (6 the first time, 6 the second time
and 4 the third time).

•	 Secondly, converting the binary value to a 64-bit integer.

•	 Thirdly, converting the integer to a variable-length string of maximum 20 characters
(though the true maximum length is 15 characters the first two times and 8 characters
the third time).

Each of these values is then concatenated and separated with a period. At the end, a
forward slash is added. This is the same way in which the SQL Server default constraint
creates the path_locator value. Unfortunately, the NEWID() function cannot be used
in a user-defined function. Otherwise, the smart developer would undoubtedly create

418

Chapter 11: FileTable

a reusable function to create a path_locator value for a new child given the parent's
path_locator.

Also, Microsoft uses the NEWID() function three times in the constraint, because it's not
possible to declare a variable there to hold the value of a single call. If you plan to create
a stored procedure, you might just make one call to NEWID() and store the value in a
temporary variable. Listing 11-21 shows what such a stored procedure could look like.

CREATE PROCEDURE dbo.CreateFileTableFile
 @name NVARCHAR(255),
 @parent_name NVARCHAR(255),
 @parent_level tinyint
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @parent_path_locator HIERARCHYID;
 DECLARE @temp_id BINARY(16);

 -- Find the path_locator of the parent of the new file
 SELECT @parent_path_locator = path_locator
 FROM Documents
 WHERE name = @parent_name
 AND path_locator.GetLevel() = @parent_level
 AND is_directory = 1;

 -- If the parent's path_locator was found
 IF (@parent_path_locator IS NOT NULL)
 BEGIN
 SET @temp_id = CONVERT(BINARY(16), NEWID());

 -- Create a new path_locator value that places the new file
 -- as a child of the parent directory
 DECLARE @path_locator VARCHAR(675)
 SET @path_locator = @parent_path_locator.ToString() +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 @temp_id, 1, 6))) + '.' +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 @temp_id, 7, 6))) + '.' +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 @temp_id, 13, 4))) + '/';

419

Chapter 11: FileTable

 -- Insert a new record, specifying the new path_locator
 INSERT INTO Documents (name, file_stream, path_locator)
 VALUES (@name, 0x, @path_locator);
 END
 ELSE
 BEGIN
 -- Raise error because the specified parent folder does not exist
 RAISERROR ('The parent name does not exist in the FileTable at the specified
level.', 16, 1);
 END
END

Listing 11-21:	 A stored procedure to insert a new row in a FileTable.

It is possible to create simpler values for the path_locator field, such as just appending
1/ to the parent_path_locator value, but then your values are deviating from the
default structure. Also, you have to provide some mechanism to ensure uniqueness of the
path_locator, which will likely involve a call to NEWID() anyway.

In the same fashion, we can now create a second-level subfolder using Listing 11-22.
The only difference from Listing 11-21 is found in the INSERT statement, where the
file_stream column has been replaced by the is_directory column.

-- Find the path_locator value for the parent directory
DECLARE @parent_path_locator HIERARCHYID

SELECT @parent_path_locator = path_locator
FROM Documents
WHERE name = 'Order Files'
 AND path_locator.GetLevel() = 1
 AND is_directory = 1

-- Create a new path_locator value that places the new file
-- as a child of the parent directory
DECLARE @path_locator VARCHAR(675)
SET @path_locator = @parent_path_locator.ToString() +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 1, 6))) + '.' +
 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 7, 6))) + '.' +

420

Chapter 11: FileTable

 CONVERT(VARCHAR(20), CONVERT(BIGINT, SUBSTRING(
 CONVERT(BINARY(16), NEWID()), 13, 4))) + '/'

-- Insert a new record, specifying the new path_locator
INSERT INTO Documents (name, is_directory, path_locator)
VALUES ('2013 Order Files', 1, @path_locator)

Listing 11-22:	 Create a new subfolder using T-SQL.

Some of the complexities in adding files and folders using T-SQL, specifically children of
other folders, may lead many developers to choose to use the Windows APIs instead. The
next section discusses using the standard .NET System.File.IO namespace classes to
achieve the same results.

Using .NET file I/O APIs

In this section, we will use the traditional .NET file I/O APIs to access FileTable data.
First, we will need to determine the path to the files and folders that are stored in
the FileTable. There is a new T-SQL function that allows us to get the UNC path of a
FileTable's file_stream column: GetFileNamespacePath(). This function takes
two optional arguments; the first determines if a full path (which includes server name,
share name and FileTable directory name) is returned or if a relative path is returned.
The second argument determines the format in which the server name is returned, and
is similar to the PathName() function found on a regular FILESTREAM column. (The
PathName() function works on the file_stream column, but returns the path you
would use to create a SqlFileStream instance in the context of a transaction.)

Listing 11-23 shows an ADO.NET code snippet to retrieve the full path of a file whose
name and location in the hierarchy is known. There are other ways to initially find the
path_locator of a file or folder, which can then be used to retrieve the UNC path.

421

Chapter 11: FileTable

string SqlText = @"SELECT file_stream.GetFileNamespacePath(1)
 FROM Documents
 WHERE name = 'MyFile.txt'
 AND path_locator.GetLevel() = 1";
string FilePath = null;

using (SqlConnection conn = new SqlConnection(
 "server=.;database=NorthPole;integrated security=sspi;"))
using (SqlCommand cmd = new SqlCommand(SqlText, conn))
{
 conn.Open();
 FilePath = (string)cmd.ExecuteScalar();
}

Listing 11-23:	 ADO.NET code snippet to retrieve full path.

You'll note that this code does not use any of the FILESTREAM-related queries we've seen
in previous chapters. This is a plain T-SQL query, with the only new addition the use
of the GetFileNamespacePath() function. This function is discussed in more detail
later in the chapter. We can use this file path to open the file for reading and output its
contents to the console (Listing 11-22).

if (FilePath != null)
{
 using (System.IO.StreamReader sr = System.IO.File.OpenText(FilePath))
 {
 Console.WriteLine(sr.ReadToEnd());
 }
}

Listing 11-24:	 Open a file in a FileTable for read access using .NET file I/O APIs.

Listing 11-24 is not designed to demonstrate best practices in the use of the .NET file I/O
APIs. Specifically, in this example, we are reading an entire file as a string without consid-
ering the file size. In a real-world scenario, we might be doing this to a multi-gigabyte file
and causing significant performance issues. Using file streams would be a better practice.

422

Chapter 11: FileTable

You may also want to use the file I/O APIs to create new files and folders. First, you'll
need to obtain the UNC path of a valid folder in the FileTable namespace. Listing 11-25
shows how to obtain the UNC path of the FileTable root folder. It uses the T-SQL
FileTableRootPath() function to retrieve the UNC path. The argument to the
function is the name of the FileTable. If this argument is not specified, the database's
root directory is returned. This function is discussed in more detail in the section below
on Managing FileTables.

string SqlText = "SELECT FileTableRootPath('Documents')";
string RootPath = null;

using (SqlConnection conn = new SqlConnection(
 "server=.;database=NorthPole;integrated security=sspi;"))
using (SqlCommand cmd = new SqlCommand(SqlText, conn))
{
 conn.Open();
 RootPath = (string)cmd.ExecuteScalar();
}

Listing 11-25:	 Obtaining the root folder of a FileTable in .NET.

Listing 11-26 then uses this root folder value to create a folder and a file inside the new
folder. In this code snippet, the System.IO namespace is not explicitly specified for the
class names, so make sure you have a using statement (or Imports in Visual Basic) at
the top of your code file before running this code.

if (RootPath != null)
{
 DirectoryInfo di = Directory.CreateDirectory(RootPath +
 "\\Order Files");
 using (StreamWriter sw = File.CreateText(di.FullName +
 "\\ReadMe.txt"))
 {
 sw.WriteLine("Hello, World!");
 }
}

Listing 11-26:	 Creating a folder and file in a FileTable using .NET file I/O APIs.

423

Chapter 11: FileTable

As a best practice, consider writing code that is independent from the SQL Server
configuration by using relative paths. If you are storing path values anywhere, store the
value relative to the database-level directory. That way, a change to the configuration of
SQL Server will not break the application.

You may be storing path values as part of an application's configuration data, which
might allow the application to retrieve the folder where all order files are located. To
avoid storing the full path: \\servername\MSSQLSERVER\NorthPole\Documents\
Order Files store instead: \Order Files. Then, when the full path is needed, call the
FileTableRootPath() function and concatenate your stored value to the return value
of the function.

A more comprehensive discussion of the use of .NET file I/O APIs is beyond the scope of
this book. However, below are some limitations that exist in the use of the APIs.

•	 It's not possible to rename the database or FileTable root directories using
the I/O APIs.

•	 It's not possible to obtain an exclusive handle on the database or FileTable
root directories.

Managing FileTables

In addition to the functions and views that apply to all FILESTREAM-enabled databases
and tables, there are specific functions and views added to SQL Server 2012 to support the
FileTable feature.

T-SQL functions

In addition to the PathName() function, which has existed since SQL Server 2008,
three new documented T-SQL functions have been added to SQL Server 2012:
FileTableRootPath(), GetFileNamespacePath() and GetPathLocator().

424

Chapter 11: FileTable

FileTableRootPath

FileTableRootPath() returns the UNC path of the root directory of the current
database and, with the use of the optional argument, appends the root directory of the
specified FileTable. On a default server instance and assuming all default share and
directory names, a call to FileTableRootPath() in the NorthPole database will yield
this result:

\\SERVERNAME\MSSQLSERVER\NorthPole

A call to FileTableRootPath('Documents') will yield this result:

\\SERVERNAME\MSSQLSERVER\NorthPole\Documents

GetFileNamespacePath

This intrinsic function returns the UNC path of the file or folder referenced by the
file_stream column. This function has two optional arguments.

The first argument determines if the computer name and share name are also included.
If the argument is 0 (default), only the relative path starting with the database-level
directory is returned. If the argument is 1, the full UNC path is returned.

The second argument determines if the computer name is converted. The default value
of 0 converts the computer name to NetBIOS format, a value of 1 does not convert the
computer name, and a value of 2 returns the fully qualified domain name of the server.
(This argument and its values are identical to that found in the PathName() intrinsic
function.)

Listing 11-27 shows the use of the GetFileNamespacePath() function with the default
argument values and with non-default argument values.

425

Chapter 11: FileTable

SELECT file_stream.GetFileNamespacePath() 'Default',
 file_stream.GetFileNamespacePath(1, 2) 'Non-default'
FROM Documents
WHERE name = 'File.txt'
/*
Default Non-default
------------------- --
\Documents\File.txt \\SQL.domain.us\MS…ER\NorthPole\Documents\File.txt
*/

Listing 11-27:	 Using the GetFileNamespacePath() function.

GetPathLocator

This function returns the HIERARCHYID associated with the specified, existing full path.
You would use this function if you have a known FileTable path and need to locate the
SQL Server data row associated with it. Books Online provides a migration scenario from
a file server to FileTable as an example at http://brurl.com/fs15.

In addition, several undocumented T-SQL functions have been added. These functions
are used in the constraints related to FileTables, but it appears they cannot be called from
regular T-SQL code.

PathName

The PathName() function has been around since the introduction of FILESTREAM
in SQL Server 2008. The function works on the file_stream column of a FileTable
and you would use its value if you use transactional access to the FileTable and you
want to use the FILESTREAM Win32 API calls. You cannot use the return value of the
PathName() function to open a FileTable file for non-transactional access.

http://brurl.com/fs15

426

Chapter 11: FileTable

There has been a change to the PathName() function in SQL Server 2012 to support
Availability Groups, a new feature in the latest release. Any discussion of Availability
Groups is beyond the scope of this book, but PathName() now has a second optional
argument that determines whether the returned name should be the virtual network
name (VNN) (default) or the computer name.

Catalog and Dynamic Management Views

Three new catalog management views and one new DMV have been added to SQL Server
2012. One catalog view has been updated to support FileTable.

sys.tables

The sys.tables catalog view has been updated to include the is_FileTable column.
A value of 1 in the is_FileTable column indicates that the table is a FileTable.

sys.database_filestream_options

We have already used this catalog view in Listing 11-9 to check the readiness of a database
for FileTable creation. The view includes four columns.

•	 database_id – The ID of the database within the SQL Server instance. This is useful
for filtering by a particular database.
You can retrieve the ID of a database using the DB_ID() function.

•	 directory_name – The database-level directory name for all FileTables within the
database. If this value is NULL, a database-level directory has not been set and the
database cannot contain FileTables.

427

Chapter 11: FileTable

•	 non_transacted_access – A TINYINT representing the level of non-transactional
access for the database. The values can be:

•	 0: Non-transactional access is disabled

•	 1: Non-transactional access is only enabled for read-only access

•	 2: Non-transactional access if fully enabled

•	 5: Non-transactional access is in transition to read-only access

•	 6: Non-transactional access is in transition to disabled.

•	 non_transacted_access_desc – The description of the value in the
non_transacted_access column. The possible values and their numeric
equivalents are:

•	 NONE (0)

•	 READ_ONLY (1)

•	 FULL (2)

•	 IN_TRANSITION_TO_READ_ONLY (5)

•	 IN_TRANSITION_TO_OFF (6)

sys.filetable_system_defined_objects

This catalog view returns a list of all the system-defined objects that have been created
when the FileTables in the current database were created. This includes the FileTable's
primary key, foreign key, unique and check constraints, and defaults. A FileTable has 20
such system-defined objects.

The view contains two columns: object_id and parent_object_id. The
object_id column contains the object ID of the system-defined object, and the
parent_object_id column contains the object ID of the FileTable. Listing 11-28 shows

428

Chapter 11: FileTable

how the object name of each object can be retrieved using the OBJECT_NAME() function.
On your system, you should recognize the names of the objects, although the IDs and
numeric values at the end of the names will be different.

select [object_id],
 OBJECT_NAME([object_id]) 'name',
 parent_object_id,
 OBJECT_NAME(parent_object_id) 'parent name'
from sys.filetable_system_defined_objects
/*
object_id name parent_object_id parent_name
--------- ------------------------------ ---------------- -----------
277576027 PK__Document__5A5B77D57DF9CB0A 261575970 Documents
…
581577110 DF__Documents__is_te__22AA2996 261575970 Documents
*/

Listing 11-28:	 Retrieving the names of the FileTable system-defined objects.

Note that the objects included in this catalog view cannot be deleted. They are an
integral part of the FileTable and will be deleted by SQL Server only if the FileTable itself
is deleted. The constraints can be disabled by disabling the FileTable namespace (see
FileTable namespace, above).

sys.filetables

This view lists information about the FileTables in the current database. The columns in
the sys.FileTables view are:

•	 object_id – The object ID of the FileTable.

•	 is_enabled – Returns 0 if the FileTable's namespace is not enabled and 1 if the
namespace is enabled.

•	 directory_name – The name of the FileTable root directory.

429

Chapter 11: FileTable

•	 filename_collation_id – The ID of the SQL Server collation used to store the file
or folder name.

•	 filename_collation_name – This column contains the name of the SQL Server
collation used to store the file or folder name.

sys.dm_filestream_non_transacted_handles

This DMV returns a list of all the non-transactional file and folder handles that
are currently open. On an active server, the results of querying this view will
change constantly.

There are 32 columns in this view, and their description can be found in Books
Online at http://brurl.com/fs16. Here, we only discuss those that are most useful
in resolving issues.

•	 database_id – The ID of the database where the item with the open handle is
located.

•	 object_id – The ID of the FileTable where the item with the open handle is located.

•	 handle_id – A unique number that can be used with the sp_kill_filestream_
non_transacted_handles stored procedure to kill the handle.

•	 opened_file_name – The relative path that was originally requested to be opened.

•	 open_time – The UTC time the handle was opened.

•	 login_name – The user name of the user who opened the handle.

Stored procedures

One new stored procedure which has also been added is sp_kill_filestream_
non_transacted_handles. This stored procedure can be used to kill handles to files
that have been opened using non-transactional access. The stored procedure takes two

http://brurl.com/fs16

430

Chapter 11: FileTable

optional arguments, table_name and handle_id. If these arguments are not
provided, or NULL is passed, all non-transactional file handles are closed. If table_name
only is provided, all non-transactional file handles for that table are closed. If
table_name is provided, then a handle_id can also be specified to close a specific
file. The handle IDs of open files can be obtained from the dynamic management view
sys.dm_filestream_non_transacted_handles, discussed previously.

Advanced FileTable Uses

In this section, we will demonstrate the use of FileTable with two other SQL Server
features that are particularly well suited to be used in conjunction with it: full-text search
and semantic search. Full-text search indexes the contents of columns of supported types
(including VARBINARY(MAX) and FILESTREAM) and allows for fast searching of those
contents. It is somewhat like the Windows Search feature. Semantic search is new in SQL
Server 2012 and builds upon the full-text indexing feature.

Full-text search

FileTable is ideally suited as a document storage repository, so adding a full-text index to
the table may help users locate documents. The schema of FileTables meets the require-
ments for full-text indexing.

•	 The file contents are in a VARBINARY(MAX) FILESTREAM column.

•	 The file extension is stored in a computed column, file_type. This column is used to
map to the correct IFilter.

•	 There is a unique index on the FileTable that meets the requirements for full-text
indexing: the primary key of the FileTable.

431

Chapter 11: FileTable

Listing 11-29 shows how to create a full-text catalog in the database and a full-text index
on the name and file_stream columns of the Documents FileTable.

-- Create a full-text catalog
CREATE FULLTEXT CATALOG NorthPole_Catalog AS DEFAULT

-- Create a full-text index on the FileTable
CREATE FULLTEXT INDEX ON Documents
 (name LANGUAGE 1033,
 file_stream TYPE COLUMN file_type LANGUAGE 1033)
 KEY INDEX PK__Document__5A5B77D57DF9CB0A
 ON NorthPole_Catalog

Listing 11-29:	 Create a full-text catalog and full-text index.

Now we can query the full-text catalog for a list of files that contain the text test in the
file_stream field (Listing 11-30). The FREETEXT() function is used to specify which
column we are querying and the value we are looking for.

SELECT file_stream.GetFileNamespacePath(1)
FROM dbo.Documents
WHERE FREETEXT(file_stream, 'test')

Listing 11-30:	 Query a full-text catalog.

Just like with any full-text index, each indexed column has a specific language code
associated with it (the sys.fulltext_languages catalog view returns a list of
supported languages and their code). If your system has documents stored in different
languages and you want those to be indexed correctly, you will need to create a separate
FileTable for each language.

A more detailed discussion of full-text search, including the predicates that can be used
and tips on maintaining the index and configuring IFilters for different file types is
beyond the scope of this book.

432

Chapter 11: FileTable

Semantic search

Semantic search is a new feature in SQL Server 2012 and allows for writing more
advanced queries that can include the relationship between words in the FileTable
contents. Scenarios that are enabled by this feature include the automatic extraction
of key words in a document (to populate a tag cloud, for example) or the creation of a
document similarity index to compare documents with each other.

An exhaustive discussion of the semantic search feature and its linguistic underpinnings
is not appropriate for this book. However, we will examine how to:

•	 enable semantic search on a FileTable which already has full-text indexing enabled

•	 write a basic query which identifies keywords in a specified document.

Prepare the server for semantic search

Books Online has a complete discussion of the prerequisites for semantic search (http://
brurl.com/fs17). During installation, the Full-Text and Semantic Extractions for Search
instance feature must be selected.

After installation, a semantic language statistics database must be installed to the system
and attached to the SQL Server instance. This database is not installed with SQL Server
2012. Instead, you must execute a separate Windows Installer package to install the
database. Afterwards, you must attach the database to your SQL Server instance.

Finally, the semantic language statistics database must be registered by calling the
sp_fulltext_semantic_register_language_statistics_db stored procedure,
specifying the semantic language statistics database.

http://brurl.com/fs17
http://brurl.com/fs17

433

Chapter 11: FileTable

Language support

Language support for semantic search is more limited than for full-text indexing. By
querying the sys.fulltext_semantic_languages catalog view, a list of supported
languages can be obtained.

Add a semantic search index

To add semantic search to the full-text index created in Listing 11-29, refer to the code in
Listing 11-31.

ALTER FULLTEXT INDEX ON Documents
 ALTER COLUMN file_stream
 ADD Statistical_Semantics

Listing 11-31:	 Create a semantic search index on an existing full-text index.

Execute a semantic query

By way of example, we will execute a semantic query on the Documents FileTable
to identify keywords in a file called Resume.docx in the root folder of the FileTable
(Listing 11-32).

-- Find the key value of the document to use
DECLARE @path_locator HIERARCHYID

SELECT @path_locator = path_locator
FROM Documents
WHERE name = 'Resume.docx'
 AND path_locator.GetLevel() = 1

434

Chapter 11: FileTable

-- If the document exists
IF (@path_locator IS NOT NULL)
 -- Select the top 10 keywords from the document
 SELECT TOP(10) KeyPhraseTable.keyphrase
 FROM SEMANTICKEYPHRASETABLE
 (
 Documents, -- the table name containing the document
 file_stream, -- the column name of the document
 @path_locator -- the ID associated with the document
) AS KeyPhraseTable
 ORDER BY KeyPhraseTable.score DESC

Listing 11-32:	 Writing a semantic query to determine keywords in a document.

You will note that this code was written in multiple statements. This was done primarily
for clarity, although the IF clause can be used to output a message in case the document
does not exist in the FileTable. Without the IF clause, the semantic search statement
would not return any results and would not provide a warning that the path_locator
value was not found.

Practical semantic analysis

You may want to run your own résumé through this type of semantic analysis and see which keywords

are identified. You may be surprised to learn that what your résumé is seen as focusing on is something

entirely different from what you intended. You can safely assume that employers and employment agen-

cies employ similar linguistic analysis to rank your résumé against others, or to compare your résumé to

job descriptions.

435

Chapter 11: FileTable

Investigating FileTable

While end-users will view the files in the FileTables like they would view any file share,
as a developer or database administrator it is still important to understand that the file
contents are actually stored in the FILESTREAM data container associated with the
file_stream column of the FileTable.

The same techniques used in Chapter 9 to investigate the location of the physical files
on the SQL Server host can be used to locate the FileTable data. Note that the folder
hierarchy in a FileTable is purely logical: the FILESTREAM data container is a flat
structure that contains all file data, regardless of the folder they are located in according
to the hierarchy structure of the FileTable.

The file names found in the FILESTREAM data container are LSNs, and not the file
names found in the name column of the FileTable. Again, this is consistent with how
FILESTREAM is implemented and this has not changed in SQL Server 2012.

The rules for updates to FILESTREAM data also apply. Most importantly, any modifi-
cation to a FileTable file results in the creation of a new file in the FILESTREAM data
container and the old file being marked as garbage by adding it to the FILESTREAM
tombstone table.

Summary

In this chapter, we examined the newly introduced FileTable feature. Available in
SQL Server 2012, FileTable expands the FILESTREAM concept, primarily by allowing
non-transactional access to the stored BLOBs and by providing a hierarchical storage
model, similar to folders on an NTFS volume.

436

Chapter 11: FileTable

To adequately understand FileTable, we first introduced several new concepts,
including the fixed schema, non-transactional access, FileTable namespace and FileTable
security. Next, we configured the server for FileTable and created a database with
FileTable support.

We created a FileTable using T-SQL and examined the support for FileTables in SSMS.
We used Windows Explorer to access the FileTable contents and create new files and
folders. In the Programming FileTable section, we learned how to add data to a FileTable
using T-SQL and the .NET file I/O APIs. We concluded that using the .NET file I/O APIs
is preferable.

Then we looked at new SQL Server objects to support FileTable, including new functions,
views and stored procedures. These objects help us to manage the FileTables in our
environment by providing insight into the structure and contents of the FileTable data.

Finally, we examined two advanced features that are supported for FileTable data:
full-text search and semantic search. The schema of FileTables lends itself well to being
used with both full-text and semantic search.

437

Chapter 12: Planning, Configuration
and Best Practices

Correct planning and configuration are vital ingredients in any successful technology
implementation, and the FILESTREAM feature is no exception to this rule. To make
sure the FILESTREAM feature is tuned for optimum performance and manageability,
there are a number of factors to consider. The most important practices are included in
this chapter. Readers may also wish to further refer to the seminal white paper by Paul
Randal: FILESTREAM Storage in SQL Server 2008 (http://brurl.com/fs7). Even though
the paper was written to target SQL Server 2008 and written around the original release,
the information it presents is still valid and highly useful.

Planning

FILESTREAM is a great feature if implemented where it is really needed, but it should
not be an automatic choice for every BLOB storage requirement. It is very important to
understand this at the planning stage of your project. Keep in mind that there are cases
where storing BLOB values in a VARBINARY(MAX) column will perform better than
storing them in a FILESTREAM column, so we need to understand where FILESTREAM is
ideal and where it is not.

As with many technology questions, the answer is "it depends." A Microsoft Research
study (conducted before the introduction of the FILESTREAM feature) investigated
the impact of storing BLOB values in the database versus the file system, and found
the following:

•	 BLOB values over 1 MB in size provide best performance when stored in the file system
(i.e. would benefit from storage in a FILESTREAM column).

http://brurl.com/fs7

438

Chapter 12: Planning, Configuration and Best Practices

•	 BLOB values smaller than 256 KB in size provide best performance when stored within
the database (i.e. would benefit from storage in a VARBINARY(MAX) column).

•	 Performance stats of BLOB values between 256 KB and 1 MB largely depend upon the
way the data is used.

Microsoft research

You can download the research paper To BLOB or Not To BLOB: Large Object Storage in a Database or

a Filesystem: http://brurl.com/fs2.

This suggests that FILESTREAM is ideal only if the average size of BLOB values is
over 1 MB. If the data is smaller, storing it in a VARBINARY(MAX) column will be
more efficient.

The usage pattern and business requirements also play a crucial role in deciding whether
to choose FILESTREAM storage. For example, if the BLOB data is modified frequently
(partial updates) a VARBINARY(MAX) column might give better performance than a
FILESTREAM column.

If the answer to the question whether or not to go with FILESTREAM is "Yes," then you
need to work on the configuration to ensure that the storage environment is optimized
for the best FILESTREAM performance.

http://brurl.com/fs2

439

Chapter 12: Planning, Configuration and Best Practices

Optimizing your Storage Configuration for
FILESTREAM

Earlier chapters showed how to easily configure a SQL Server instance for experi-
menting with FILESTREAM storage. When it comes to setting up a production server for
FILESTREAM storage, a number of additional configuration steps are recommended to
make sure that the server is tuned for optimum FILESTREAM performance.

Keep FILESTREAM data containers on a separate
disk volume

FILESTREAM operations can be very I/O intensive, so it is advisable to keep the
FILESTREAM data container isolated from the data and log files of your database. If you
have several FILESTREAM-enabled databases on the server, it is advisable to put each
FILESTREAM container on a separate disk volume.

If you expect to store a huge number of data files in your FILESTREAM data container,
you can partition the FILESTREAM table and split the FILESTREAM data across multiple
disk volumes. We saw how to partition a FILESTREAM table in Chapter 2.

Disabling short file names

As we discovered in Chapter 2, for every FILESTREAM cell that is not NULL, SQL Server
creates a disk file in the columns folder of the data container. If the table is large, it is
quite possible that the folders associated with the FILESTREAM columns will contain a
large number of disk files.

440

Chapter 12: Planning, Configuration and Best Practices

By default, NTFS creates a secondary file name for every file that you create in the NTFS
volume. These secondary file names are called short file names, and they follow the legacy
8.3 naming convention. Creation of short file names on folders that have a large number
of files is very resource intensive, because the system needs to ensure uniqueness. It does
this by matching the newly created name with the short file name of all the other files
present in the folder.

Short file name generation is turned on by default. However, short file names are needed
only if you expect 16-bit applications to read your files, which is highly unlikely on today's
production servers. In addition, the data you store in the FILESTREAM data container
should not be directly accessed by any application other than SQL Server. This means
that you can safely turn off short file name creation on disk volumes where you store the
FILESTREAM data.

You can use the command line tool fsutil.exe to disable short file names on your
system. To first check whether it is already disabled, you can query the current setting by
running the query shown in Listing 12-1 in the command window.

fsutil.exe behavior query disable8dot3

Listing 12-1:	 Querying the short file name setting.

This will return the current value configured for this setting, as shown in Figure 12-1.

Figure 12-1:	 The current setting for short file names.

441

Chapter 12: Planning, Configuration and Best Practices

If short file names are not disabled, you can disable them by running fsutil.exe with
the set parameter (Listing 12-2).

fsutil.exe behavior set disable8dot3 1

Listing 12-2:	 Changing the short file names setting.

You must reboot your computer for the changes to take effect.

While doing the research for this chapter, I came across a number of articles which
mentioned that disabling short file names does not really provide any performance
benefits. To verify this, I ran some tests which created a large number of files on a folder,
and compared the performance differences.

The test script created 100,000 files in 20 laps, each lap creating 5,000 text files in a
folder. At first, the test script was executed with short file names enabled. The script
was run three times, and the average time it took to complete each lap was recorded.
Then the test was run another three times with short file name generation disabled.
(A server reboot was required for the change to take effect). My testing, summarized in
Table 12-1, showed a considerable performance improvement after disabling 8.3 file names
on the system.

Lap
Duration (in seconds)
with short file names: File names

Enabled Disabled

1 4 1 File_1_1.txt to File_1_5000.txt

2 10 3 File_2_1.txt to File_2_5000.txt

3 9 4 File_3_1.txt to File_3_5000.txt

4 10 2 File_4_1.txt to File_4_5000.txt

442

Chapter 12: Planning, Configuration and Best Practices

Lap
Duration (in seconds)
with short file names: File names

Enabled Disabled

5 11 4 File_5_1.txt to File_5_5000.txt

6 15 3 File_6_1.txt to File_6_5000.txt

7 21 4 File_7_1.txt to File_7_5000.txt

8 51 1 File_8_1.txt to File_8_5000.txt

9 106 3 File_9_1.txt to File_9_5000.txt

10 3 4 File_10_1.txt to File_10_5000.txt

11 4 2 File_11_1.txt to File_11_5000.txt

12 4 2 File_12_1.txt to File_12_5000.txt

13 5 1 File_13_1.txt to File_13_5000.txt

14 7 2 File_14_1.txt to File_14_5000.txt

15 7 2 File_15_1.txt to File_15_5000.txt

16 10 2 File_16_1.txt to File_16_5000.txt

17 10 1 File_17_1.txt to File_17_5000.txt

18 13 2 File_18_1.txt to File_18_5000.txt

19 14 2 File_19_1.txt to File_19_5000.txt

20 3 1 File_20_1.txt to File_20_5000.txt

Table 12-1:	 Performance test results for short file names.

443

Chapter 12: Planning, Configuration and Best Practices

Initially, I was surprised that, when the test was run with short file names enabled, the
duration went up with each lap (up to Lap 9) and then fell down to 3 seconds from 106.
The same happened at Lap 19 too. Then I realized that the delay has to do with the
amount of data NTFS has to look at before creating a new file. After Lap 9, the file name
pattern changed and the same happened after Lap 19. It indicates that not only the
number of files in the folder, but also the way files are named, affects the performance
when short file names are enabled.

SQL Server names FILESTREAM data files based on the LSN that created the
FILESTREAM data file. Based on the workload and usage pattern on your server, the file
names on disk may or may not follow a specific pattern. The system overhead to create
short file names depends on the number of files with similar names in the same folder.

If the file names created are similar, you might notice a performance difference after
disabling short file names. It is important to note that the impact of short file names
comes into the picture only when new files are created. If your application does not create
new files, the impact of the change may often not be noticeable.

Compressing FILESTREAM data

When data is compressed, the I/O pressure on the system is reduced because less data
is read from, and written to, the disk. On the other hand, CPU usage increases because
the storage engine has to compress the data before writing to the disk, and decompress
it on reading. Depending upon your workload, CPU, and I/O subsystem capabilities,
compression may or may not help. In most cases, I have seen that compression helps if
the data is compressible.

The SQL Server row- and page-level compression feature does not compress
FILESTREAM data files. However, SQL Server allows FILESTREAM data files to be stored
on compressed disk volumes. This will reduce the storage space needed for the data. The
decision to go with compressed FILESTREAM storage should be taken only after clearly

444

Chapter 12: Planning, Configuration and Best Practices

analyzing the workload, system configuration, the type of BLOB values to be processed,
and so on. Some file types use a compressed format, so trying to compress them again will
add overhead without benefits.

Configuring NTFS cluster size

It is recommended that you format your NTFS volume with a larger-than-default
cluster size (allocation unit). The default cluster size in Windows 2000, Windows Server
2003, and Windows Server 2008 is 4 KB. The recommended cluster size for optimum
FILESTREAM performance is 64 KB, which is the maximum cluster size. If you intend to
use NTFS file compression, you must keep the cluster size to 4 KB; NTFS file compression
is not possible on volumes formatted with a cluster size greater than 4 KB. You can check
the current cluster size of your disk by running chkdsk.exe without any parameters at
the command prompt (Figure 12-2).

Figure 12-2:	 Running chkdsk to see the current cluster size.

445

Chapter 12: Planning, Configuration and Best Practices

It is important to consider the cluster size of your volume during the planning phase of
the FILESTREAM implementation because, unless trusted third-party tools are used, it is
not possible to change the cluster size without formatting the volume (and thus erasing
all data).

Disabling the indexing service

Indexing usually slows down common file operations such as opening and closing.
Because FILESTREAM data files should be accessed only through SQL Server, it is
recommended that you disable indexing on the NTFS volumes where FILESTREAM
data is stored.

Disabling indexing on an NTFS volume is quite easy. You can do this by right-clicking on
the NTFS volume and selecting Properties. In the General tab, you can see an option to
enable or disable the indexing service on the selected disk volume (Figure 12-4).

Figure 12-3:	 Disabling indexing on an NTFS volume.

446

Chapter 12: Planning, Configuration and Best Practices

Configuring antivirus

"Should I configure my antivirus software to scan the FILESTREAM data?" is a very inter-
esting question. The answer depends upon various factors specific to the environment,
such as the source of data, or the way FILESTREAM files are processed. If you are storing
data that originated from untrusted sources (for example, end-user file uploads, perhaps
even by users outside your own organization), you may want to enable virus scans.
However, it is important to recognize that virus scanning software may not be 100%
effective because it will not be able to determine the file type of the stored data if the
scanner uses the file extension for that purpose.

If you decide to configure your antivirus software to scan the FILESTREAM data
container, make sure you do not configure it to delete the infected files. If the antivirus
software deletes an infected file from the FILESTREAM data container, you will end up
with a corrupted database and it will be hard for you to figure out what went wrong and
subsequently recover the database.

It is therefore recommended that you configure your antivirus software to quarantine
the infected files rather than deleting them. If a FILESTREAM data file is infected and
the antivirus software moves it to a quarantine folder, you can run DBCC CHECKDB to
identify the missing files in the FILESTREAM data container and match it with the files
in the quarantine folder. Chapter 7 included the options for recovering from missing
FILESTREAM data files.

You may also consider an alternative approach, in which the virus scanning is done at
the time of saving the FILESTREAM data. Many antivirus software vendors provide
SDKs, which expose API functions that you can use to scan a memory stream. Such
an API function can be called from your .NET or Win32 code just before writing the
FILESTREAM data. This approach is most effective if your application writes data
exclusively using the streaming I/O APIs and not using T-SQL statements.

447

Chapter 12: Planning, Configuration and Best Practices

Disabling the Last Access Time attribute

Each file in an NTFS volume has an attribute named Last Access Time. By default,
NTFS tries to keep this attribute accurate by updating it every time the file is accessed.
It means that even a read operation will result in a disk write operation (to update the
Last Access Time attribute). Disabling this attribute on the FILESTREAM volume will
give you considerable performance benefits if you deal with a large number of files that
are frequently read. When the Last Access Time update is disabled, this attribute will
show the same value as the File Creation Time.

You can disable Last Access Time by running fsutil.exe on computers running on
Windows Server 2003 and later. You might want to first check the current setting of this
configuration value. You can do it by running fsutil.exe in query mode (Listing 12-3).

fsutil.exe behavior query disablelastaccess

Listing 12-3:	 Querying the Last Access Time setting.

If Last Access Time is not disabled, you will see a message that reads
disablelastaccess is not currently set.

If the system is configured to disable the update of Last Access Time, your
query will return disablelastaccess = 1.

If you see that your server is currently configured to update Last Access Time,
you can disable it by running fsutil.exe with the set parameter (Listing 12-4).

fsutil.exe behavior set disablelastaccess 1

Listing 12-4:	 Disabling Last Access Time update.

448

Chapter 12: Planning, Configuration and Best Practices

Configuring the disks with the correct RAID level

Configuring the correct RAID level is a complex subject, and a detailed discussion is
beyond the scope of this chapter. Depending upon the environment, type of applications,
and policies, the DBA team and storage administrators need to work together to identify
the correct RAID level for the given environment and the performance objectives.

A detailed discussion of the RAID configuration is beyond the remit of this book. Below,
however, are some general guidelines.

1.	 RAID 5 + striping (also referred to as RAID 50) is one of the best options, and gives
very good read and write performance as well as good fault tolerance. However, this is
one of the most expensive options because it requires the most disks to implement.

2.	 RAID 0 gives very good read and write performance, is cheaper than
RAID 5 + striping, but provides no fault tolerance.

3.	 RAID 5 gives very good fault tolerance, but read and write operations are not
as fast as with the other options.

Just like the other configuration parameters, correct planning before implementing
FILESTREAM is crucial for ensuring optimum performance.

More on RAID configurations

For a more detailed discussion of the different RAID configurations, see the Wikipedia articles on RAID at

http://brurl.com/fs19, and http://brurl.com/fs20.

http://brurl.com/fs19
http://brurl.com/fs20

449

Chapter 12: Planning, Configuration and Best Practices

Regular disk defragmentation

One of the regular database maintenance activities that you need to plan for
FILESTREAM databases is defragmentation of the FILESTREAM disk volumes. If the
FILESTREAM data files are large or frequently modified, the chances of fragmentation are
higher, and regular defragmentation of the disk will improve performance.

Setting up FILESTREAM for Remote Access

Remote access to FILESTREAM data is one of the most misunderstood terms associated
with FILESTREAM storage. Remote access to FILESTREAM data means "accessing
FILESTREAM data from a client application that resides on a different computer from
where the SQL Server instance is installed."

When you enable FILESTREAM for I/O streaming access in the FILESTREAM configu-
ration, FILESTREAM data is accessible from client applications running on the same
computer; an application running on the same computer as a SQL Server 2008 instance
can access the FILESTREAM data either using the Win32 API or the Managed API exposed
by SQL Server.

There is a further option, to allow remote clients to have streaming access to
FILESTREAM data on the FILESTREAM configuration page of the SQL Server installer.
You might have also noticed it in the FILESTREAM tab or the property sheet of the
SQL Server instance opened from SQL Server Configuration Manager. In most real-world
scenarios, the database and application will reside on different computers, therefore you
should enable this option. Appendix A discusses fully the configuration of remote access.

Depending upon the security configuration of your network, you may or may not require
additional changes to access FILESTREAM data remotely.

450

Chapter 12: Planning, Configuration and Best Practices

Access to FILESTREAM data from a remote computer uses the Server Message Block
(SMB) protocol. SMB is a protocol used for sharing files and other resources such as
printers between computers. The default port number used by SMB is 445. You need to
make sure that the firewall is configured to allow access to these ports.

Configuring the client computer for remote access

Note that streaming access to the FILESTREAM data is available only when the client
is authenticated using Windows authentication. So, when accessing FILESTREAM data
remotely, it is very important to ensure that the Windows user account your application
uses on the other computer has adequate permissions to log in to the SQL Server instance
and access the FILESTREAM table using Windows authentication (Integrated Security).

As on the server side, to use FILESTREAM in a firewall-protected environment, the client
must be able to resolve DNS names to the server that contains the FILESTREAM files.

Configuring the client application for remote access

On the application side, accessing FILESTREAM data remotely is no different from
accessing it from the same computer. In Chapter 3, we saw several examples that demon-
strated how to access the FILESTREAM data using the streaming APIs. You should be able
to run those examples successfully against a remote SQL Server instance if FILESTREAM
has been correctly configured for remote access.

MSDN documentation recommends doing fewer updates with bigger data chunks when
accessing FILESTREAM data remotely. The recommended buffer size is 60 KB for the
optimum performance.

451

Chapter 12: Planning, Configuration and Best Practices

Best Practices for FILESTREAM Development

In this section, we have included all best practices for developers working with
FILESTREAM. Some of these practices are found in other chapters of the text as well, but
this section may provide value for quickly evaluating an application's design or for use
during a code review.

Use FILESTREAM streaming APIs to read and write
FILESTREAM data

As we have seen, reading and writing FILESTREAM data using T-SQL is not efficient
in most cases because, when FILESTREAM data is accessed using T-SQL, streaming
capability is not available. In addition, T-SQL access uses SQL Server's memory for
buffering the FILESTREAM data, which can significantly add to the memory pressure
on the server.

For best performance, always use the Win32 or Managed API for reading and writing
FILESTREAM data.

Avoid small partial updates

FILESTREAM does not support in-place update of the BLOB data. When you modify a
FILESTREAM value, SQL Server will create a new copy of the entire file with the modified
content and discard the old file. A new copy of the file needs to be created even for a small
change in the FILESTREAM data file.

If your application requires modification of data, you might want to review the expected
volume of changes when you are deciding whether FILESTREAM storage is ideal. If
frequent modifications are required, you might benefit more from keeping the data in a

452

Chapter 12: Planning, Configuration and Best Practices

VARBINARY(MAX) column. To help you make this decision, do some performance tests
to compare FILESTREAM and VARBINARY(MAX) storage options based on your specific
workload and usage pattern.

Keep an additional column to store the type of file
or extension

In many cases, a FILESTREAM column is expected to store more than one type of file. For
example, a product catalog application might store multiple types of files (.jpg, .png,
etc.) in the image column, and a document management application might store multiple
types of documents (Word, Excel, etc.), and so on.

An additional column that specifies the file type can be beneficial. For example, in
Chapter 10 we saw that full-text indexing expects an additional column in the table
that stores the file extension. Based on the file type, the index component identifies the
IFilter for the file and indexes the content. Even if you do not use full-text indexing, it
may be helpful to keep a file type column, for example to identify the content type to the
client application.

Identifying the type of file from a file header

Most file types have a header section that stores various pieces of information about the
content of the file. For example, most image file types keep a file header that specifies the
type of file, dimension of the image, and so on.

While it is recommended that you keep an additional column that specifies the file type,
in the real world you may end up in a situation where there is no such column. For
example, assume that the application stores different types of images in the FILESTREAM
column of a product catalog table. In the absence of an extra column which stores

453

Chapter 12: Planning, Configuration and Best Practices

the file type or extension, you might need to read the file header (first few bytes of the
FILESTREAM data) to determine the type of file.

When only a small piece of data is to be read from the beginning of the file, T-SQL
access is found, in most cases, to be more appropriate and efficient than Win32 or
Managed API access.

The code snippet in Listing 12-5 reads the header information from the image files stored
in a FILESTREAM column and identifies the file types.

SELECT
 ItemNumber,
 ItemDescription,
 CASE
 WHEN SUBSTRING(itemimage, 1, 2) = 0XFFD8 THEN 'JPEG'
 WHEN SUBSTRING(itemimage, 1, 2) = 0X424D THEN 'BMP'
 WHEN SUBSTRING(itemImage, 1, 8) = 0x89504E470D0A1A0A THEN 'PNG'
 ELSE 'Other'
 END AS FileType
FROM Items

/*
ItemNumber ItemDescription FileType
---------- --------------- --------
MM2001 Dell Laptop JPEG
MS1002 Microsoft Mouse PNG
MS1005 TVS Key Board PNG
MS1007 XBOX 360 BMP
*/

Listing 12-5:	 Identifying file types from the file headers

In the above example, the column FileType shows the type of images stored in the
FILESTREAM column by reading the header information stored in the first few bytes of
the BLOB value.

454

Chapter 12: Planning, Configuration and Best Practices

Add a content-type column on FILESTREAM tables

If you intend to serve the FILESTREAM data from a web application, it may be beneficial
to store the appropriate MIME type on each row. When the web application serves the
FILESTREAM data to the client, it can set the appropriate content type in the HTTP
Response header. Based on the content type, the client browser/application can open the
file using the appropriate application.

In most cases, if you have a column that stores the file extension or file type, you can
build the content type (such as "application/msword" for Word documents, "image/jpeg"
for jpeg images, and so on). But if you deal with a large number of different file types, it
may be a good idea to store the MIME type of the BLOB value stored in each row.

Add a timestamp or date column to track last
modified date for cache control

If you are serving FILESTREAM data from web applications, caching is an important
factor to consider. When a client browser and web server communicate over HTTP
protocol, they exchange some caching information. The client tells the server about the
copy of the file locally available (local cache) and the server instructs the client to use the
local copy or to download a new copy of the file.

If the web server tells the client that the file on the server is the same as the copy that
the client has in the local cache, the file is not downloaded again. Instead, the client
browser serves it from the local cache. This significantly enhances the performance of
web applications.

Caching information is exchanged between the client browser/application and web server
using the HTTP cache headers. The client browser sends the time stamp or etag of
the file it has in the local cache. After examining the cache header information of the

455

Chapter 12: Planning, Configuration and Best Practices

incoming request, the web server tells the client whether the server has a newer version
of the file or not. The file needs to be downloaded only if the server has a newer version
or if the cache is expired.

In the case of a FILESTREAM application, the data is stored and managed within the
database. The web server does not know about the modified status of the file. As a result,
in most cases, the file is downloaded every time a request comes in. This adds consid-
erable overhead to the application, the database, and the web server.

Having a time stamp or date column on the table that keeps track of modifications
done on the FILESTREAM value will help you to implement cache control in your
FILESTREAM web handler. When a request comes in from a client, you can examine the
cache control headers to see whether the file on the server is newer than the file on the
client. If the file has not been modified since the client downloaded it, your handler can
send back an HTTP 304 response which tells the client to use its local copy of the file.

Use a computed column to retrieve the file size

While working with FILESTREAM databases, you might need to know the size of the
BLOB value stored in the FILESTREAM column. To avoid calculating the length of each
BLOB value every time you need to query, you might decide to create a column and
update it at the time of writing the FILESTREAM value.

An easier option is to create a PERSISTED computed column that stores the length of the
file. Listing 12-6 shows how to add a computed column that stores the size of the BLOB
value stored in a FILESTREAM column.

ALTER TABLE Items
ADD FileSize AS DATALENGTH(ItemImage) PERSISTED;

Listing 12-6:	 Adding a computed column to store the size of the BLOB value in a FILESTREAM column.

456

Chapter 12: Planning, Configuration and Best Practices

As soon as the computed column is added, the sizes of the existing FILESTREAM values
are automatically calculated and stored in the column. Whenever new FILESTREAM
values are inserted or existing values are updated, the size is automatically recalculated
and the computed column is updated. Listing 12-7 shows an efficient way to retrieve the
file size from the computed column.

SELECT
 ItemNumber,
 ItemDescription,
 END AS FileType,
 FileSize
FROM Items

/*
ItemNumber ItemDescription FileSize
---------- --------------- --------
MM2001 Dell Laptop 2290
MS1002 Microsoft Mouse 1753
MS1005 TVS Key Board 1930
MS1007 XBOX 360 28286
*/

Listing 12-7:	 Retrieving the file size from the computed column.

Keep a default constraint on FILESTREAM columns

We have already learnt, in Chapter 2, that a FILESTREAM table is populated using a
two-step process. First, the relational data is inserted using a T-SQL query or stored
procedure, then the FILESTREAM column is updated using Win32 or the Managed API.

To be able to write the FILESTREAM data using Win32 or the Managed API, the
FILESTREAM cell must not be NULL. So the T-SQL query that inserts the relational
data must insert a dummy value into the FILESTREAM column before the column can
be updated using the FILESTREAM API. If you forget to insert this dummy value into
the FILESTREAM column and try to update it using the streaming APIs, the operation
will fail.

457

Chapter 12: Planning, Configuration and Best Practices

It is recommended in most cases that you add a default constraint to your
FILESTREAM columns so that, when a new row is inserted, the FILESTREAM column will
be populated with a non-NULL value. Listing 12-8 demonstrates how to add a default
constraint to a FILESTREAM column.

ALTER TABLE Items
ADD CONSTRAINT ItemImage_Default DEFAULT 0x
FOR ItemImage

Listing 12-8:	 Adding a default constraint to a FILESTREAM column.

The default value for the ItemImage column is 0x, which indicates a zero-length
binary value. This will effectively create a zero-length (empty) file in the FILESTREAM
data container.

Summary

Correct planning and configuration are necessary to get the best performance from your
FILESTREAM-enabled database. We examined a number of configuration settings that
will significantly boost FILESTREAM performance.

In addition to configuring the disks with the correct RAID level, disabling short file names
can help to improve performance considerably. It is recommended that you configure
NTFS cluster size from 4 KB (default) to 64 KB if you do not intend to use NTFS file
compression, and disable indexing and the last access attribute on the NTFS volume
where you plan to store the FILESTREAM data.

If you would like to configure your antivirus software to scan the FILESTREAM data files,
make sure that you configure it to only quarantine the infected files (not to delete them).
If the antivirus software deletes FILESTREAM data files, the resulting database corruption
may be harder to resolve.

458

Chapter 12: Planning, Configuration and Best Practices

Remote access to the FILESTREAM data uses SMB protocol and therefore the SMB ports
(445 and 139) must be enabled on the firewall.

In most cases, it will be helpful to keep some additional columns, such as the file
extension, MIME content type, and file size on the FILESTREAM tables, depending upon
the type and usage pattern of your application.

459

Appendix A: Configuring FILESTREAM
on a SQL Server Instance

In this appendix, we provide detailed instructions for how to enable the FILESTREAM
feature, and how to disable it if necessary.

You can enable FILESTREAM while you are installing a SQL Server 2008 instance,
either using the installation wizard, or unattended. Alternatively, you can change the
configuration settings on an existing SQL Server instance to enable the feature.

As described in Chapter 1, the process requires both Windows Administrator-level
actions (to enable the feature) and SQL Server Administrator-level actions (to set up the
FILESTREAM access level). If you enable FILESTREAM as part of the installation, the
access level is automatically set up based on the settings you select during installation.
However, if you enable FILESTREAM post-installation, you will have to configure it in
two places: in the SQL Server Configuration Manager to enable the feature, and in the
SQL Server instance properties to set the access level.

In most cases, you might decide to enable FILESTREAM as part of the installation
process if you know for sure that the feature is needed. If you do not know at the time
of installation whether a particular feature is needed or not, then it is a better choice to
install and configure just those features that are needed, and enable other features only
when required.

It is important to note that a service restart is not needed to enable the FILESTREAM
feature. So there is no harm in skipping the FILESTREAM configuration step during
installation and enabling it only when needed. However, fully disabling FILESTREAM
will require a service restart to take effect. Therefore, it's better not to enable it during
installation if you do not really need it.

460

Appendix A: Configuring FILESTREAM on a SQL Server Instance

In this appendix, we will examine the actions below.

1.	 Understanding FILESTREAM configuration and access levels.

2.	 Enabling and configuring FILESTREAM during installation.

3.	 Enabling and configuring FILESTREAM after installation.

a.	 Configuring FILESTREAM at the Windows level.

b.	 Configuring FILESTREAM at the SQL Server instance level:

i.	 using SSMS

ii.	 using T-SQL.

4.	 Verifying FILESTREAM configuration.

a.	 Verifying Windows-level FILESTREAM configuration.

b.	 Verifying SQL Server instance-level FILESTREAM configuration.

c.	 Using SSMS to check that FILESTREAM is enabled.

d.	 Using T-SQL to check that FILESTREAM is enabled.

5.	 Disabling the FILESTREAM feature.

6.	 Advanced installation and configuration options.

a.	 Unattended SQL Server installation and FILESTREAM configuration.

b.	 Enabling and configuring FILESTREAM from the command line.

c.	 Configuring FILESTREAM access level from the command line.

d.	 Setting up FILESTREAM on a failover cluster.

461

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Understanding FILESTREAM Configuration and
Access Levels

As FILESTREAM is a hybrid feature which deals with relational data that resides in
database files, and BLOB data that resides in the file system folders, it has to be configured
at the SQL Server instance level as well as the Windows operating system level. The first
step is to configure it at the Windows level, which requires Windows Administrator privi-
leges. The second is to configure it at the SQL Server instance level, which requires SQL
Server sysadmin privileges.

This configuration process has been designed as a two-step process, maybe because
of the way roles and permissions are distributed among people who manage computers,
networks, and SQL Server instances in the "real world." In most environments,
Windows/Network administrators manage and administer the operating system and
file system-level configurations, and database administrators manage SQL Server
instance-level configurations.

If FILESTREAM is configured during the SQL Server installation, both parts of the
process will be carried out during the installation process. If FILESTREAM is being
configured on an existing instance, it becomes a two-step process, first enabling the
feature, using the SQL Server Configuration Manager, and then setting the access level,
using SSMS or T-SQL.

462

Appendix A: Configuring FILESTREAM on a SQL Server Instance

FILESTREAM access levels

The FILESTREAM feature can be configured to allow three different access levels.

T-SQL access

This is the lowest FILESTREAM access level. When FILESTREAM is enabled at this level,
you can create FILESTREAM-enabled databases and read/write FILESTREAM data only
using T-SQL.

When FILESTREAM data is enabled for T-SQL access, a local or remote application that
has a valid SQL Server connection open can access the FILESTREAM data just like any
other relational data in the database.

Streaming access (local)

When the FILESTREAM feature is enabled for I/O streaming access, FILESTREAM data
can be accessed using the Win32 APIs as well as .NET Managed classes.

Note that at this level streaming access is enabled only to applications running on the
same computer as the SQL Server instance. It is also important to understand that
FILESTREAM streaming access is allowed only when using Windows authentication to
connect to the database instance.

Streaming access (remote)

When the FILESTREAM feature is enabled for remote streaming access, FILESTREAM
data can be accessed from client applications running on a different computer through
the streaming APIs.

463

Appendix A: Configuring FILESTREAM on a SQL Server Instance

FILESTREAM access level configuration

As mentioned earlier, the FILESTREAM feature has to be enabled at the operating
system level as well as SQL Server instance level. FILESTREAM configuration at the
Windows level is done using SQL Server Configuration Manager. FILESTREAM
configuration at the SQL Server instance level can be administered either through the
SSMS GUI dialog or through T-SQL. The desired FILESTREAM access level needs to be
configured at both places.

T-SQL access is the lowest FILESTREAM access level, followed by local streaming.
Remote streaming is the highest FILESTREAM access level. If the Windows Administrator
enables only T-SQL access and the SQL Server administrator enables full access, only
T-SQL access will be permitted. Similarly, if the Windows Administrator enables remote
streaming access and the SQL Server Administrator enables T-SQL access, then only
T-SQL access will be allowed.

Local versus remote access

Local streaming access and remote streaming access has been a topic of great confusion
to many people. Questions such as "Can a user accessing my website read FILESTREAM
data when remote streaming access is enabled?" have appeared several times on forums.
So let us try to understand them clearly.

Let us look at an example of a network/application configuration, and see how different
FILESTREAM access levels affect different use cases.

464

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Figure A-1:	 Diagram demonstrating FILESTREAM local/remote configuration.

•	 SQL Server is installed on Server 1 and hosts a FILESTREAM-enabled database.

•	 Web Application 1 is installed on Server 1. The web application connects to SQL Server
using SQL Server authentication.

•	 Web Application 2 is installed on Server 1. The web application connects to SQL Server
using Windows authentication.

•	 Web Application 3 is configured on Server 2. The web application connects to SQL
Server using Windows authentication.

•	 Desktop Application 1 is running on a computer at a remote location. The desktop
application connects to the FILESTREAM-enabled SQL Server instance on Server 1
over the Internet using SQL Server authentication.

•	 Desktop Application 2 is running on a computer on the same network as the server.
The desktop application connects to the FILESTREAM-enabled SQL Server instance
on Server 1 over the LAN using Windows authentication.

465

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Let's now see how each of the above applications behave under different FILESTREAM
access levels.

1.	 T-SQL Access is enabled
Because only T-SQL access is enabled:
a.	 Web Applications 1, 2, and 3 can access FILESTREAM data through T-SQL.

b.	 Desktop Applications 1 and 2 can access FILESTREAM data through T-SQL.

c.	 None of the applications can access the FILESTREAM data through
streaming APIs.

2.	 Streaming Local Access is enabled
a.	 Web Application 1 can access FILESTREAM data only through T-SQL, because

streaming access is only possible when using Windows authentication.

b.	 Web Application 2 can access FILESTREAM data through T-SQL and
streaming APIs.

c.	 Web Application 3 can access FILESTREAM data through T-SQL only, because it is
not running on the same server as the SQL Server instance hosting the database.

d.	 Desktop Applications 1 and 2 can access FILESTREAM data through T-SQL only.

i.	 Desktop Application 1 cannot use streaming access because it uses SQL Server
authentication, and because the necessary ports are blocked on the firewall.

ii.	 Desktop Application 2 cannot use streaming access because it runs on a
computer other than the SQL Server.

3.	 Streaming Remote Access is enabled
a.	 Web Application 1 can access FILESTREAM data only through T-SQL, because

streaming access is only possible when using Windows authentication.

b.	 Web Application 2 can access FILESTREAM data through T-SQL and
streaming APIs.

c.	 Web Application 3 can access FILESTREAM data through T-SQL and
streaming APIs.

466

Appendix A: Configuring FILESTREAM on a SQL Server Instance

d.	 Desktop Application 1 can access FILESTREAM data through T-SQL only, because
it uses SQL Server authentication and because the necessary ports are blocked on
the firewall.

e.	 Desktop Application 2 can access FILESTREAM data through T-SQL and
streaming APIs.

Enabling and Configuring FILESTREAM During
Installation

Installing and configuring FILESTREAM during SQL Server installation is the easiest
installation option because the entire configuration can be completed in a single step.
All the desired options can be selected during the Database Engine Configuration step
during installation.

Figure A-2:	 Enabling FILESTREAM in the Database Engine Configuration installation step.

We'll briefly examine the different configuration options available on this page.

467

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Enable FILESTREAM for Transact-SQL access

This is the primary level FILESTREAM configuration setting and it must be selected in
order to enable the SQL Server instance to use the FILESTREAM capabilities. When this
box is checked, the FILESTREAM feature will be enabled at the Windows and SQL Server
instance levels. We can create, restore or attach FILESTREAM-enabled databases when
the installation finishes, but we can only use T-SQL to read and write FILESTREAM data.

If the configuration is enabled, the installation process will automatically set
FILESTREAM access level on the SQL Server instance to Transact-SQL Access Enabled.

Enable FILESTREAM for file I/O streaming access

When this configuration option is enabled, our SQL Server instance will allow I/O
streaming access to the FILESTREAM data originating from the machine where the
instance is installed. When I/O streaming is enabled, FILESTREAM data can be accessed
using the Win32 API or .NET managed classes. Accessing the FILESTREAM data through
the FILESTREAM API is much more efficient than T-SQL access and is always the recom-
mended method.

When enabling FILESTREAM for I/O streaming access, we must specify a Windows share
name. This Windows file share is not mapped to a directory on the system; it is simply
a unique identifier that SQL Server uses to enable streaming access to the FILESTREAM
data. This is internally (logically) linked to the actual file location. When we enable Win32
access to the FILESTREAM data, SQL Server installs and enables a Windows file system
filter driver component. This component is responsible for doing the appropriate trans-
lation from the logical path to the file path as configured through FILESTREAM filegroup
location.

If the configuration is enabled, the installation process will automatically set
FILESTREAM access level on the SQL Server instance to Full access enabled.

468

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Allow remote clients to have streaming access to
FILESTREAM data

This option provides I/O streaming access to the FILESTREAM data from applica-
tions running on a different computer. Without this option, I/O streaming access to
the FILESTREAM data will only be possible from an application that runs on the same
computer as the SQL Server instance.

If the configuration is enabled, the installation process will automatically set
FILESTREAM access level on the SQL Server instance to Full access enabled. Note that
this is the same FILESTREAM access level we saw in the previous section when remote
streaming access was not enabled. The fact is that there is no way to differentiate between
the two settings at the instance level. We can verify these values by running the following
T-SQL code after the SQL Server instance is installed.

SELECT
 SERVERPROPERTY('FilestreamEffectiveLevel') AS EffectiveValue,
 SERVERPROPERTY('FilestreamConfiguredLevel') AS WindowsConfiguredValue

Listing A-1:	 Checking FILESTREAM access level.

If remote I/O streaming is enabled, the server property value will be 3. If I/O streaming is
enabled without remote access, it will be 2. These configuration settings are explained in
detail later in this chapter.

469

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Enabling and Configuring FILESTREAM After
Installation

If FILESTREAM is not enabled during the SQL Server installation process, it is quite
possible to perform the configuration post-installation. The most common reasons for
not enabling FILESTREAM during installation are:

•	 the feature is not (currently) required in the environment

•	 the DBA or server administrator does not know whether FILESTREAM is needed or
not, so it is better to keep it disabled and enable only when needed.

As discussed earlier, enabling and configuring FILESTREAM after installation requires
two separate configuration actions, and we'll examine each in detail.

Configuring FILESTREAM at the Windows level

Windows level FILESTREAM feature configuration is administered from the
SQL Server Configuration Manager. Follow the steps below to open the FILESTREAM
configuration dialog.

1.	 Select SQL Server Configuration Manager from the Configuration Tools submenu.

Figure A-3:	 Starting SQL Server Configuration Manager.

470

Appendix A: Configuring FILESTREAM on a SQL Server Instance

2.	 From SQL Server Configuration Manager, right-click on the SQL Server Service and
select Properties from the context menu.

Figure A-4:	 Opening SQL Server Service Properties.

3.	 This will open the FILESTREAM configuration page which allows you to enable the
FILESTREAM feature and select the desired access level.

Figure A-5:	 Enabling the FILESTREAM feature.

4.	 The options available on this page are the same as what is available in the installation
dialog. See the section above, where we discussed these options in detail.

471

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Configuring FILESTREAM at the SQL Server
instance level

FILESTREAM can be configured at the SQL Server instance level, either using the SSMS
GUI dialog or through T-SQL.

Using SSMS to set FILESTREAM access level

SQL Server instance-level FILESTREAM configuration settings can be managed from the
property page of the SQL Server instance.

1.	 In the Object Explorer window, right-click on the SQL Server instance and select
Properties from the context menu.

Figure A-6:	 Opening the SQL Server Instance Property Page.

472

Appendix A: Configuring FILESTREAM on a SQL Server Instance

2.	 Click on the Advanced tab on the left-hand-side control panel.

3.	 Look for the Filestream section on the top right-hand side of the property page.

Figure A-7:	 Configuring the Filestream Access Level.

The Filestream Access Level option within the configuration dialog allows you to select
one of the following options:

•	 Disabled – disables FILESTREAM access for the SQL Server instance

•	 Transact-SQL access enabled – enables FILESTREAM for T-SQL access

•	 Full access enabled – enables FILESTREAM for T-SQL and file I/O streaming access.

473

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Making changes to the SQL Server FILESTREAM access level will require a service restart
in some cases. Whenever you make changes to the FILESTREAM access level, SSMS will
show a warning message indicating that the changes will not take effect until SQL Server
is restarted (Figure A-8).

Figure A-8:	 Restart SQL Server message.

However, we can safely ignore this message when we select an "enable" access option;
a service restart is not required when enabling FILESTREAM access on a SQL Server
instance. If we completely disable access by selecting Disabled, a restart is required before
the change will be effective.

Figure A-9:	 Configured values and Running values.

474

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Notice that the property page has two views: Configured values and Running values, as
shown in Figure A-9. The Running values view shows the values currently being used
by SQL Server. If an access level change requires a SQL Server restart, as in the case of
Disabled, you will see the new value in Configured values and the old value in Running
values until the instance is restarted.

Using T-SQL to set the FILESTREAM access level

We can use T-SQL to set the FILESTREAM access level. For example, run the T-SQL code
in Listing A-2 to change the access level to Full Access Enabled.

EXEC sp_configure filestream_access_level, 2
GO
RECONFIGURE
GO

Listing A-2:	 Using T-SQL to change the FILESTREAM access level.

The second argument passed to sp_configure specifies the FILESTREAM access level.

•	 0 - Disables FILESTREAM access.

•	 1 - Enables FILESTREAM for T-SQL access.

•	 2 - Enables FILESTREAM for full access (T-SQL and local I/O streaming). This option
is not valid on clustered installations.

When you change the FILESTREAM access level using T-SQL, a message to restart SQL
Server service is displayed only if you choose the "disable" FILESTREAM access level
(parameter value 0).

475

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Verifying FILESTREAM Configuration

We have seen various FILESTREAM configuration options and learned how to enable and
configure FILESTREAM to the required access level. Let's verify that all the FILESTREAM
settings are correctly configured before we start using them.

Verifying Windows-level FILESTREAM configuration
settings

We know that the Windows-level FILESTREAM configuration is done from SQL Server
Configuration Manager. So the first step is to check the FILESTREAM tab of the property
page of the SQL Server service within the Configuration Manager.

Make sure that the FILESTREAM access is enabled to the desired level on the configu-
ration page. If I/O streaming access to the FILESTREAM data is required, make sure that
the FILESTREAM share name is configured in the configuration dialog.

Figure A-10:	 Verifying FILESTREAM configuration.

476

Appendix A: Configuring FILESTREAM on a SQL Server Instance

It is also important to verify that a Windows share with the same name exists to ensure
that the windows share is correctly configured.

Figure A-11:	 Verifying FILESTREAM Windows share.

Please note that the Windows share does not point to a physical disk location; it points
to a virtual identifier which allows SQL Server to map a SQL Server instance with its
associated FILESTREAM data container. Attempting to open the Windows share will
result in an error.

Figure A-12:	 The FILESTREAM Windows share is not accessible using Windows Explorer.

Verifying the Windows-level configuration can also be done using T-SQL, as
discussed next.

477

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Verifying SQL Server Instance-level FILESTREAM
configuration settings

To ensure that the SQL Server instance is enabled and correctly set up for FILESTREAM
storage, we can use SSMS or T-SQL.

Using SSMS to check that FILESTREAM is enabled

You can verify that FILESTREAM is correctly configured by looking at the SQL Server
instance properties in SSMS. Select the Advanced page, then select the Running values
view (Figure A-12).

Figure A-13:	 The Running values view shows the active configuration settings.

Then look at the Filestream Access Level as shown in Figure A-14.

Figure A-14:	 Checking the Filestream Access Level.

478

Appendix A: Configuring FILESTREAM on a SQL Server Instance

The access level should show either Transact-SQL access enabled or Full access enabled.
Note that, in the Running values view, there is no actual drop-down list.

The Configured values view will show the Filestream Access Level as configured at
the SQL Server instance level. It is possible for the configured value to show Full access
enabled, while the FILESTREAM feature can actually be disabled at the Windows level.

Using T-SQL to check that FILESTREAM is enabled

The T-SQL code in Listing A-3 retrieves the FILESTREAM configuration of the current
SQL Server instance.

SELECT SERVERPROPERTY('FilestreamEffectiveLevel') AS FilestreamEffectiveLevel
/*
FilestreamEffectiveLevel

1
*/

Listing A-3:	 Query to retrieve the FILESTREAM configuration level of a SQL Server instance.

The possible return values of the above query are:

•	 0 - FILESTREAM is disabled

•	 1 - FILESTREAM is enabled for T-SQL access

•	 2 - FILESTREAM is enabled for T-SQL and local streaming access only

•	 3 - FILESTREAM is enabled for T-SQL and local and remote streaming access.

At the time of writing, neither the MSDN documentation nor Books Online mention
configuration value 3. Configuration values 2 and 3 are used to differentiate between
local and remote streaming access.

479

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Disabling the FILESTREAM Feature

To disable the FILESTREAM feature at the Windows level, clear the Enable FILESTREAM
for Transact-SQL access option in the Properties page of the SQL Server instance in SQL
Server Configuration Manager.

Figure A-15:	 Disabling the FILESTREAM feature.

A message will be displayed to inform you that a service restart is required before the
changes can take effect, as shown in Figure A-16.

Figure A-16:	 Restart SQL Server instance message following disable.

480

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Until the instance is restarted, the FILESTREAM-enabled databases can be queried using
T-SQL (both relational and FILESTREAM data), but no longer using the streaming APIs.
Access using the streaming APIs is disabled immediately because the file share is removed.

The restart is required because SQL Server has to take offline any FILESTREAM-enabled
databases on the instance. Following the service restart, any FILESTREAM-enabled
databases will not be accessible. You will be able to see the databases in the SSMS Object
Explorer (Figure A-16), but you will not be able to establish a connection to them.

 Figure A-17:	 Inaccessible FILESTREAM-enabled database in Object Explorer.

If we now try to run a query on a FILESTREAM-enabled database, we will get an error
similar to the one shown in Listing A-4.

SELECT *
FROM NorthPole.dbo.items
/*
Msg 945, Level 14, State 2, Line 1
Database 'NorthPole' cannot be opened due to inaccessible
files or insufficient memory or disk space.
See the SQL Server errorlog for details.
*/

Listing A-4:	 Error message showing FILESTREAM-enabled database is inaccessible.

481

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Advanced Installation and Configuration Options

We have examined the basic and the most commonly used FILESTREAM installation
and configuration processes, and it is time for us to see some of the advanced configu-
ration options.

Unattended SQL Server installation and
FILESTREAM configuration

When installing SQL Server 2008 or later in unattended mode, we can use the
/FILESTREAMLEVEL and /FILESTREAMSHARENAME configuration options to enable
the FILESTREAM feature.

•	 /FILESTREAMLEVEL – This setting is optional. It specifies the required access level for
the FILESTREAM feature. The following values are supported:

•	 0 – Disable FILESTREAM for the current instance. This is the default value.

•	 1 – Enable FILESTREAM for T-SQL access.

•	 2 – Enable FILESTREAM for T-SQL and I/O streaming access. This option is not
valid for clusters.

•	 3 – Allow remote clients streaming access to FILESTREAM data.

•	 /FILESTREAMSHARENAME – This setting is required if /FILESTREAMLEVEL is 2 or 3.
It specifies the Windows file share name to be used for storing the FILESTREAM data.

The example in Listing A-5 installs a new instance of SQL Server named KATMAIUA with
FILESTREAM enabled, and sets the FILESTREAM share name to KATMAIUA.

482

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Setup.exe
 /q
 /ACTION=Install
 /FEATURES=SQL
 /INSTANCENAME=KATMAIUA
 /SQLSVCACCOUNT="DOMAIN\User"
 /SQLSVCPASSWORD="mypwd"
 /SQLSYSADMINACCOUNTS="DOMAIN\User"
 /AGTSVCACCOUNT="DOMAIN\User"
 /AGTSVCPASSWORD="mypwd"
 /IAcceptSQLServerLicenseTerms
 /FILESTREAMLEVEL="3"
 /FILESTREAMSHARENAME="KATMAIUA"

Listing A-5:	 Example setup options for enabling FILESTREAM in unattended mode.

/IAcceptSQLServerLicenseTerms is a new parameter introduced in SQL Server
2008 R2. It is a mandatory parameter for unattended installations and the setup will fail if
this value is not supplied.

Figure A-18 shows an example of the command line to enable FILESTREAM in
unattended mode.

Figure A-18:	 Example of enabling FILESTREAM in unattended mode.

Once the installation script completes, we can verify the configuration settings of the
newly installed SQL Server instance using the methods explained earlier in this chapter.

483

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Enabling and configuring FILESTREAM from the
command line

Sometimes, we need to enable and configure FILESTREAM using the command line, for
example as part of the installation or upgrade of an application that intends to use the
FILESTREAM features. It is quite easy to set the FILESTREAM access level by using SQL
Server command line tools like sqlcmd.exe.

However, programmatically enabling the FILESTREAM feature is more complicated using
a scripting language like VBScript. Luckily, a short VBScript is available for download at
codeplex.com: http://brurl.com/fs26.

Listing A-6 shows the syntax for running that script.

cscript filestream_enable.vbs
 [/Machine:MachineName]
 [/Instance:InstanceName]
 [/Level:level]
 [/Share:ShareName]

Listing A-6:	 Syntax for running VBScript program to enable FILESTREAM.

Some debug messages are displayed; we can safely ignore these. Figure A-19 shows an
example command line for enabling FILESTREAM programmatically.

filestream_enable.vbs /Machine:localhost /Instance:MSSQLSERVER /Level:3 /
Share:MSSQLSERVER

Once the script execution has completed, FILESTREAM is enabled at the Windows level,
and we can then configure the access level on the SQL Server instance.

http://brurl.com/fs26

484

Appendix A: Configuring FILESTREAM on a SQL Server Instance

As of this writing, the CodePlex script mentioned does not work with
SQL Server 2012. If you would like to run this script on SQL Server 2012, you
need to edit the script and change ComputerManagement10:FilestreamSettings to
ComputerManagement11:FilestreamSettings on lines number 37 and 110.

Configuring FILESTREAM access level from the
command line

We can also configure the FILESTREAM access level from the command line using
sqlcmd.exe. It allows us to run a T-SQL script on the specified SQL Server instance. As a
first step, create a T-SQL script file containing the following code.

EXEC sp_configure filestream_access_level, 2
GO
RECONFIGURE
GO

Listing A-7:	 Creating a script file to configure FILESTREAM access level from the command line.

In this example, we are trying to set the FILESTREAM access level to Full access. See the
reference earlier in this chapter for a detailed explanation of the values that can be passed
as the second parameter into the system stored procedure sp_configure.

Save the script file as c:\temp\set_filestream_access_level.sql. This file can be
passed as the query input to sqlcmd.exe. The following example demonstrates it.

sqlcmd -S . -E -I "c:\temp\set_filestream_access_level.sql"

When running this command, the T-SQL code we wrote within the script file will
be executed against the specified SQL Server instance (in our case it is the default
SQL Server instance on the local computer) and the output will be displayed in the
command window.

485

Appendix A: Configuring FILESTREAM on a SQL Server Instance

Figure A-19:	 Configuring FILESTREAM access level from command line.

We can use the various methods discussed earlier to verify that the configuration changes
took place correctly on the specified SQL Server instance.

Setting up FILESTREAM on a failover cluster

When setting up the FILESTREAM feature on a failover cluster, we need to make sure
that all the nodes are set up with the same configuration. The following steps are
recommended for enabling and configuring FILESTREAM feature on a failover cluster.

1.	 Enable the FILESTREAM feature on the primary node using SQL Server
Configuration Manager.

2.	 If I/O streaming access to the FILESTREAM data is required, enable it and specify the
desired Windows share name or leave the default.

3.	 If remote access to the FILESTREAM data is required, enable the option. This action
will also create a cluster file share resource.

4.	 Enable the FILESTREAM feature on each passive node using SQL Server
Configuration Manager. The I/O streaming option on each of the passive
nodes should be configured in the same way as on the primary node. All the
passive nodes must use the same Windows share name as the primary node.

486

Appendix A: Configuring FILESTREAM on a SQL Server Instance

5.	 After FILESTREAM is enabled and configured using SQL Server Configuration
Manager, configure the desired FILESTREAM access level on the primary node and
all the passive nodes. It is important to make sure that you set the same FILESTREAM
access level on all the nodes.

It is also important to configure the FILESTREAM data container(s) on a shared disk. The
FILESTREAM data container must be accessible from all nodes in the cluster, hence the
requirement to place it on a shared disk.

Summary

FILESTREAM can be enabled during installing of the SQL Server instance by selecting the
appropriate options in the wizard. However, there may be times when you need to enable
it on an existing SQL Server instance.

Enabling FILESTREAM post-installation is a two-step process. FILESTREAM must be
enabled at the Windows Administrator level using SQL Server Configuration Manager,
and it must be enabled at the SQL Server Administrator level either using SSMS or the
sp_configure system stored procedure.

FILESTREAM can also be enabled as part of an unattended SQL Server installation by
using the /FILESTREAMLEVEL and /FILESTREAMSHARENAME setup parameters.
Additionally, a VBScript program, available at codeplex.com, can be used to programmati-
cally enable the FILESTREAM feature at the Windows Administrator level.

If we disable FILESTREAM on a SQL Server instance that has one or more FILESTREAM-
enabled databases, those databases will not be accessible after restarting the SQL
Server service. The data on the database is unaffected, and will be available as normal if
FILESTREAM is re-enabled and the SQL Server service is restarted. The message that SQL
Server Configuration Manager provides is quite misleading. It says that, after disabling
FILESTREAM, data in the FILESTREAM columns will not be available. However, the
entire database will be inaccessible instead of just the FILESTREAM columns.

About Redgate

www.redgate.com

Compliant
Database DevOps

Redgate is the leading provider of software
solutions for Compliant Database DevOps.
We’ve specialized in database software for
over 20 years.

Now, our products help 800,000 people in every type of
organization around the world, from small businesses
to 91% of the Fortune 100.

Our solutions make life easier for development teams,
operations teams, and IT leaders by solving the
database challenges in delivering software at speed.

Whether they use industry leading products such as
Redgate Deploy and SQL Monitor, or our open-source
framework Flyway, teams benefit from faster
development, Database DevOps, and a safe, compliant
approach to deployments.

	_GoBack
	Introduction
	Chapter 1: Storing and Managing Unstructured Data
	Structured Data
	Unstructured Data
	CLOB data
	BLOB data

	Storing Unstructured Data
	Storing Large Objects in SQL Server
	Storing Large Objects in the file system
	Database or file system?

	Enter FILESTREAM
	A first look at FILESTREAM
	When to use FILESTREAM

	Summary

	Chapter 2: Getting Started with FILESTREAM
	The FILESTREAM Data Container
	Understanding the FILESTREAM Filegroup
	Creating FILESTREAM-enabled Databases
	Creating a new FILESTREAM-enabled database
	Enabling an existing database for FILESTREAM

	Creating a Table with FILESTREAM Columns
	Using SSMS table designer to create a table with FILESTREAM columns
	Using T-SQL to create a table with FILESTREAM columns
	Using T-SQL to add FILESTREAM columns to an existing table
	Converting VARBINARY(MAX) columns to FILESTREAM and vice versa
	Tables and FILESTREAM filegroups
	FILESTREAM filegroup queries

	FILESTREAM Data Manipulation Using T-SQL
	Inserting a row with FILESTREAM data
	Updating and deleting FILESTREAM data
	FILESTREAM and triggers

	Advanced FILESTREAM DDL
	The FILESTREAM data container and partitioned tables
	Creating a database with multiple FILESTREAM filegroups

	Disabling FILESTREAM Storage on a Database
	Summary

	Chapter 3: Accessing FILESTREAM Data from Client Applications
	What is Streaming?
	Understanding Streaming Access to FILESTREAM Data
	Step 1: Starting a transaction
	Step 2: Retrieving the logical path name and transaction context
	Step 3: Opening the FILESTREAM data file
	Step 4: Reading and writing FILESTREAM data
	Step 5: Closing the FILESTREAM data file
	Step 6: Closing the transaction (COMMIT/ROLLBACK)

	Data Manipulation Using the Streaming APIs
	Inserting a new record into a FILESTREAM-enabled table
	Replacing the FILESTREAM data completely
	Partial updates to FILESTREAM data
	Reading information from the FILESTREAM store
	Deleting the BLOB data stored in a FILESTREAM column
	Deleting a row from a FILESTREAM-enabled table

	Lab 1: Reads, Writes and Partial Updates
	Handling multiple FILESTREAM columns and rows

	Understanding the Logical Path to a FILESTREAM Data File
	Formatting PathName()
	PathName() and ROWGUIDCOL

	SqlFileStream Class Reference
	Instantiating a SqlFileStream object

	OpenSqlFilestream API Reference
	Summary

	Chapter 4: FILESTREAM with Entity Framework and LINQ to SQL
	Lab 2: FILESTREAM and Entity Framework
	Rebuilding the sample database
	Lab 2a: A simple EF application using T-SQL access
	Lab 2b: Using SqlFileStream and Entity Framework together

	Lab 3: FILESTREAM and LINQ to SQL
	Creating a new console application project
	Adding a LINQ to SQL class
	Defining object relational mappings
	Adding a new row
	Querying FILESTREAM data using LINQ to SQL

	Summary

	Chapter 5: FILESTREAM with ASP.NET and Silverlight
	Lab 4: Uploading Files to a FILESTREAM Database from an ASP.NET Web Page
	Creating a new ASP.NET web application
	Adding a database connection string
	Designing the data entry page
	Writing the "code-behind"
	Running the application

	Lab 5: Deploying and Configuring a FILESTREAM Web Application on IIS
	Running Visual Studio under an administrator account
	Publishing the web application into a new virtual directory
	Configuring IIS to use SQL Server Integrated Security
	Running the application

	Lab 6: Creating a Web Handler to Serve Images from a FILESTREAM Database
	Creating a stored procedure to retrieve FILESTREAM data
	Creating the web page to serve images
	Running and testing the application

	Lab 7: Displaying Thumbnail Images of Items from a FILESTREAM Database on an ASP.NET Web Page
	Creating the stored procedure to fetch item information
	Adding a new web form and data grid
	Adding a data source

	Lab 8: Using SqlFileStream in an N-Tier Scenario
	Creating the Visual Studio solution and projects
	Writing the domain object code
	Writing the data access code
	Creating an HTTP handler to serve images
	Adding remote calling capability
	Testing the application from Visual Studio

	Lab 9: Playing a Video Stored in a FILESTREAM Database on a Silverlight Application
	Setting up the data
	Creating a Silverlight application
	Creating a video handler
	Adding and configuring MediaElement
	Running and testing the application

	Summary

	Chapter 6: FILESTREAM with SSIS and SSRS
	FILESTREAM and SSIS
	Lab 10: Loading BLOB Values into a FILESTREAM Column Using SSIS
	Setting up the sample database
	Creating the SSIS package

	Lab 11: Exporting BLOB Values from a FILESTREAM Column Using SSIS
	Creating the SSIS package
	Setting the output folder
	The Execute SQL task
	The Foreach Loop container
	The Script task

	Lab 12: Displaying FILESTREAM Data in SSRS Reports
	Summary

	Chapter 7: FILESTREAM Database Administration
	FILESTREAM and Database Transaction Isolation Levels
	READ COMMITTED, REPEATABLE READ and SERIALIZABLE isolation levels
	READ UNCOMMITTED isolation level
	Snapshot isolation level
	Summary of FILESTREAM behavior under transaction isolation levels

	Detaching and Attaching FILESTREAM Databases
	FILESTREAM and Garbage Files
	Garbage files and recovery models
	FILESTREAM garbage collection and tombstone tables

	FILESTREAM Data Corruption and DBCC Checks
	Corruption caused by missing FILESTREAM data files
	Corruption caused by orphaned files
	Corruption caused by deleting the garbage files manually

	Querying FILESTREAM Databases
	FILESTREAM Data and Space Management
	Changing the FILESTREAM filegroup location
	Adding a new partition to share the FILESTREAM storage load

	Migrating FILESTREAM Data
	SSMS scripting
	The Database Publishing Wizard

	Summary

	Chapter 8: Backup and Restore for FILESTREAM Databases
	Creating and Populating the Sample Database
	Backing up FILESTREAM Databases
	Full backups
	Differential backups
	Transaction log backups

	Restoring FILESTREAM Databases
	Restoring from a full backup
	Point-in-time restore

	File Backups and Piecemeal Restores
	Data and Backup Compression for FILESTREAM Databases
	Beware of Garbage Files in FILESTREAM Backups
	Summary

	Chapter 9: Investigating FILESTREAM Databases
	Relevant System Catalog Views
	sys.all_columns, sys.columns and sys.system_columns
	sys.computed_columns
	sys.identity_columns
	sys.dm_repl_traninfo
	sys.tables
	sys.internal_tables
	sys.partitions
	sys.data_spaces
	sys.database_files
	sys.filegroups
	sys.system_internals_partition_columns
	sys.system_internals_partitions
	sys.filestream_tombstone_*

	Useful FILESTREAM Metadata Queries
	SQL Server instance-level queries
	Database-level queries

	FILESTREAM-related DMVs
	sys.dm_filestream_file_io_handles
	sys.dm_filestream_file_io_requests
	sys.dm_tran_active_transactions

	FILESTREAM and Wait Types
	FS_FC_RWLOCK
	FS_GARBAGE_COLLECTOR_SHUTDOWN
	FS_HEADER_RWLOCK
	FS_LOGTRUNC_RWLOCK
	FSA_FORCE_OWN_XACT
	FSAGENT
	FSTR_CONFIG_MUTEX
	FSTR_CONFIG_RWLOCK

	Summary

	Chapter 10: Integrating FILESTREAM with other SQL Server Features
	FILESTREAM and Replication
	Replicating FILESTREAM columns
	Maximum replication data size
	FILESTREAM replication and the UNIQUEIDENTIFIER column
	Managing the FILESTREAM replication flag using T-SQL
	Replication log reader and the FILESTREAM garbage collector
	FILESTREAM and synchronization methods
	Replicating databases with multiple FILESTREAM filegroups
	FILESTREAM and the different replication types

	FILESTREAM and Log Shipping
	FILESTREAM and Full-Text Indexing
	FILESTREAM and Database Snapshots
	FILESTREAM and Change Data Capture
	FILESTREAM and Data Compression
	FILESTREAM and Transparent Data Encryption
	FILESTREAM and Database Mirroring
	FILESTREAM and High Availability Disaster Recovery
	Summary

	Chapter 11: FileTable
	Introduction to FileTable
	FileTable Concepts
	Fixed schema
	Creating folder structures using the HIERARCHYID data type
	Root folder
	Non-transactional access
	FileTable namespace
	FileTable security

	Setting Up the Server for FileTable
	Creating a Database with Support for FileTable
	Creating a FileTable
	Create a FileTable using T-SQL
	Create a FileTable using SSMS
	Work with a FileTable using SSMS
	Adding constraints to the FileTable
	Restrictions on creating FileTables

	Accessing a FileTable with Windows Explorer and Other Client Applications
	Creating files
	Creating folders
	Memory-mapped files
	Empty database folder

	Programming FileTable
	Adding rows using T-SQL
	Using .NET file I/O APIs

	Managing FileTables
	T-SQL functions
	Catalog and Dynamic Management Views
	Stored procedures

	Advanced FileTable Uses
	Full-text search
	Semantic search

	Investigating FileTable
	Summary

	Chapter 12: Planning, Configuration and Best Practices
	Planning
	Optimizing your Storage Configuration for FILESTREAM
	Keep FILESTREAM data containers on a separate disk volume
	Disabling short file names
	Compressing FILESTREAM data
	Configuring NTFS cluster size
	Disabling the indexing service
	Configuring antivirus
	Disabling the Last Access Time attribute
	Configuring the disks with the correct RAID level
	Regular disk defragmentation

	Setting up FILESTREAM for Remote Access
	Configuring the client computer for remote access
	Configuring the client application for remote access

	Best Practices for FILESTREAM Development
	Use FILESTREAM streaming APIs to read and write FILESTREAM data
	Avoid small partial updates
	Keep an additional column to store the type of file or extension
	Identifying the type of file from a file header
	Add a content-type column on FILESTREAM tables
	Add a timestamp or date column to track last modified date for cache control
	Use a computed column to retrieve the file size
	Keep a default constraint on FILESTREAM columns

	Summary

	Appendix A: Configuring FILESTREAM on a SQL Server Instance
	Understanding FILESTREAM Configuration and Access Levels
	FILESTREAM access levels

	Enabling and Configuring FILESTREAM During Installation
	Enable FILESTREAM for Transact-SQL access
	Enable FILESTREAM for file I/O streaming access
	Allow remote clients to have streaming access to FILESTREAM data

	Enabling and Configuring FILESTREAM After Installation
	Configuring FILESTREAM at the Windows level
	Configuring FILESTREAM at the SQL Server instance level

	Verifying FILESTREAM Configuration
	Verifying Windows-level FILESTREAM configuration settings
	Verifying SQL Server Instance-level FILESTREAM configuration settings
	Using SSMS to check that FILESTREAM is enabled
	Using T-SQL to check that FILESTREAM is enabled

	Disabling the FILESTREAM Feature
	Advanced Installation and Configuration Options
	Unattended SQL Server installation and FILESTREAM configuration
	Enabling and configuring FILESTREAM from the command line
	Configuring FILESTREAM access level from the command line
	Setting up FILESTREAM on a failover cluster

	Summary

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack

