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Abstract

The runtime for a modern, concurrent, garbage collected language like Java or Haskell is like an
operating system: sophisticated, complex, performant, but alas very hard to change. If more of the
runtime system were in the high level language, it would be far more modular and malleable. In
this paper, we describe a novel concurrency substrate design for the Glasgow Haskell Compiler
(GHC) that allows multicore schedulers for concurrent and parallel Haskell programs to be safely
and modularly described as libraries in Haskell. The approach relies on abstracting the interface to
the user-implemented schedulers through scheduler activations, together with the use of Software
Transactional Memory (STM) to promote safety in a multicore context.

1 Introduction

High performance, multicore-capable runtime systems (RTS) for garbage-collected lan-
guages have been in widespread use for many years. Examples include virtual machines for
popular object-oriented languages such as Oracle’s Java HotSpot VM (HotSpotVM, 2014),
IBM’s Java VM (IBM, 2014), Microsoft’s Common Language Runtime (CLR) (Microsoft
Corp., 2014), as well as functional language runtimes such as Manticore (Fluet et al.,
2008), MultiMLton (Sivaramakrishnan et al., 2014) and the Glasgow Haskell Compiler
(GHC) (GHC, 2014).

These runtime systems tend to be complex monolithic pieces of software, written not in
the high-level source language (Java, Haskell, etc), but in an unsafe, systems programming
language (usually C or C++). They are highly concurrent, with extensive use of locks, con-
dition variables, timers, asynchronous I/O, thread pools, and other arcana. As a result, they
are extremely difficult to modify, even for their own authors. Moreover, such modifications
typically require a rebuild of the runtime, so it is not an easy matter to make changes on a
program-by-program basis, let alone within a single program.

This lack of malleability is particularly unfortunate for the thread scheduler, which
governs how the computational resources of the multi-core are deployed to run zillions of
lightweight high-level language threads. A broad range of strategies are possible, including
ones using priorities, hierarchical scheduling, gang scheduling, and work stealing. The goal
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of this paper is, therefore, to allow programmers to write a User Level Scheduler (ULS),
as a library written in the high level language itself. Not only does this make the scheduler
more modular and changeable, but it can readily be varied between programs, or even
within a single program.

The difficulty is that the scheduler interacts intimately with other aspects of the runtime
such as transactional memory or blocking I/O. Our main contribution is the design of an
interface that allows expressive user-level schedulers to interact cleanly with these low-
level communication and synchronisation primitives:

• We present a new concurrency substrate design for Haskell that allows application
programmers to write schedulers for Concurrent Haskell programs in Haskell (Sec-
tion 3). These schedulers can then be plugged-in as ordinary user libraries in the
target program.
• By abstracting the interface to the ULS through scheduler activations (Anderson

et al., 1991), our concurrency substrate seamlessly integrates with the existing RTS
concurrency support such as MVars, asynchronous exceptions (Marlow et al., 2001),
safe foreign function interface (Marlow et al., 2004), software transactional mem-
ory (Harris et al., 2005a), resumable black-holes (Reid, 1999), etc. The RTS makes
upcalls to the activations whenever it needs to interact with the ULS. This design
absolves the scheduler writer from having to reason about the interaction between
the ULS and the RTS, and thus lowering the bar for writing new schedulers.

• Concurrency primitives and their interaction with the RTS are particularly tricky
to specify and reason about. An unusual feature of this paper is that we precisely
formalise not only the concurrency substrate primitives (Section 5), but also their
interaction with the RTS concurrency primitives (Section 6).

• We present an implementation of our concurrency substrate in GHC. Experimen-
tal evaluation indicate that the performance of ULS’s is comparable to the highly
optimised default scheduler of GHC (Section 7).

2 Background

To understand the design of the new concurrency substrate for Haskell, we must first give
some background on the existing RTS support for concurrency in our target platform –
the Glasgow Haskell Compiler (GHC). We then articulate the goals of our concurrency
substrate.

2.1 The GHC runtime system

GHC has a sophisticated, highly tuned RTS that has a rich support for concurrency with ad-
vanced features such as software transactional memory (Harris et al., 2005a), asynchronous
exceptions (Marlow et al., 2001), safe foreign function interface (Marlow et al., 2004),
and transparent scaling on multicores (Harris et al., 2005b). The Haskell programmer can
use very lightweight Haskell threads, which are executed by a fixed number of Haskell
execution contexts, or HECs. Each HEC is in turn animated by an operating system thread;
in this paper we use the term tasks for these OS threads, to distinguish them from Haskell
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Fig. 1: The anatomy of the Glasgow Haskell Compiler runtime system

threads. The choice of which Haskell thread is executed by which HEC is made by the
scheduler.

GHC’s current scheduler is written in C, and is hard-wired into the RTS (Figure 1). It
uses a single run-queue per processor, and has a single, fixed notion of work-sharing to
move work from one processor to another. There is no notion of thread priority; nor is
there support for advanced scheduling policies such as gang or spatial scheduling. From
an application developer’s perspective, the lack of flexibility hinders deployment of new
programming models on top of GHC such as data-parallel computations (Chakravarty
et al., 2007; Lippmeier et al., 2012), and applications such as virtual machines (Galois,
2014) and web-servers (Haskell, 2014) that can benefit from the ability to define custom
scheduling policies.

2.2 The challenge

Because there is such a rich design space for schedulers, our goal is to allow a user-level
scheduler (ULS) to be written in Haskell, giving programmers the freedom to experiment
with different scheduling or work-stealing algorithms. Indeed, we would like the ability
to combine multiple ULS’s in the same program. For example, in order to utilise the best
scheduling strategy, a program could dynamically switch from a priority-based scheduler
to gang scheduling when switching from general purpose computation to data-parallel
computation. Applications might also combine the schedulers in a hierarchical fashion;
a scheduler receives computational resources from its parent, and divides them among its
children.

This goal is not not easy to achieve. The scheduler interacts intimately with other RTS
components including

• MVars and transactional memory (Harris et al., 2005a) allow Haskell threads to
communicate and synchronise; they may cause threads to block or unblock.

• The garbage collector must somehow know about the run-queue on each HEC, so
that it can use it as a root for garbage collection.
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• Lazy evaluation means that if a Haskell thread tries to evaluate a thunk that is already
under evaluation by another thread (it is a “black hole”), the former must block until
the thunk’s evaluation is complete (Harris et al., 2005b). Matters are made more
complicated by asynchronous exceptions, which may cause a thread to abandon
evaluation of a thunk, replacing the thunk with a “resumable black hole”.
• A foreign-function call may block (e.g., when doing I/O). GHC’s RTS can schedule

a fresh task (OS thread) to re-animate the HEC, blocking the in-flight Haskell thread,
and scheduling a new one (Marlow et al., 2004).

All of these components do things like “block a thread” or ”unblock a thread” that
require interaction with the scheduler. One possible response, taken by Li et al (Li et al.,
2007) is to program these components, too, into Haskell. The difficulty is that they all are
intricate and highly-optimised. Moreover, unlike scheduling, there is no call from Haskell’s
users for them to be user-programmable.

Instead, our goal is to tease out the scheduler implementation from the rest of the RTS,
establishing a clear API between the two, and leaving unchanged the existing implementa-
tion of MVars, STM, black holes, FFI, and so on.

Lastly, schedulers are themselves concurrent programs, and they are particularly devious
ones. Using the facilities available in C, they are extremely hard to get right. Given that the
ULS will be implemented in Haskell, we would like to utilise the concurrency control
abstractions provided by Haskell (notably transactional memory) to simplify the task of
scheduler implementation.

3 Design

In this section, we describe the design of our concurrency substrate and present the con-
currency substrate API. Along the way, we will describe how our design achieves the goals
put forth in the previous section.

3.1 Scheduler activation

Our key observation is that the interaction between the scheduler and the rest of the RTS
can be reduced to two fundamental operations:

1. Block operation. The currently running thread blocks on some event in the RTS.
The execution proceeds by switching to the next available thread from the scheduler.

2. Unblock operation. The RTS event that a blocked thread is waiting on occurs. After
this, the blocked thread is resumed by adding it to the scheduler.

For example, in Haskell, a thread might encounter an empty MVar while attempting to
take the value from it. This operation is analogous to attempting to take a lock that is
currently held by some other thread. In this case, the thread performing the MVar read op-
eration should block. Eventually, the MVar might be filled by some other thread (analogous
to lock release), in which case, the blocked thread is unblocked and resumed with the value
from the MVar. As we will see, all of the RTS interactions (as well as the interaction with
the concurrency libraries) fall into this pattern.
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Fig. 2: New GHC RTS design with Concurrency Substrate.

Notice that the RTS blocking operations enqueue and dequeue threads from the sched-
uler. But the scheduler is now implemented as a Haskell library. So how does the RTS
find the scheduler? We could equip each HEC with a fixed scheduler, but it is much more
flexible to equip each Haskell thread with its own scheduler. That way, different threads
(or groups thereof) can have different schedulers.

But what precisely is a “scheduler”? In our design, the scheduler is represented by two
function values, or scheduler activations 1. Every user-level thread has a dequeue activation
and an enqueue activation. The activations provide an abstract interface to the ULS to
which the thread belongs to. The activations are function values closed over the shared
datastructure representing the scheduler. At the very least, the dequeue activation fetches
the next available thread from the ULS encapsulated in the activation, and the enqueue
activation adds the given thread to the encapsulated ULS. The activations are stored at
known offsets in the thread object so that the RTS may find them. The RTS makes upcalls
to the activations to perform the enqueue and dequeue operations on a ULS.

Figure 2 illustrates the modified RTS design that supports the implementation of ULS’s.
The idea is to have a minimal concurrency substrate which is implemented in C and is a
part of the RTS. The substrate not only allows the programmer to implement schedulers as
Haskell libraries, but also enables other RTS mechanisms to interface with the user-level
schedulers through upcalls to the activations.

Figure 3 illustrates the steps associated with blocking on an RTS event. Since the sched-
uler is implemented in user-space, each HEC in the RTS is aware of only the currently
running thread, say t. Suppose thread t waits for an abstract event e in the RTS, which is
currently disabled. Since the thread t cannot continue until e is enabled, the RTS adds t

1 The idea of an “activation” comes from the operating systems literature (Anderson et al., 1991)
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to the queue of threads associated with e, which are currently waiting for e to be enabled.
Notice that the RTS “owns” t at this point. The RTS now invokes the dequeue activation
associated with t, which returns the next runnable thread from t’s scheduler queue, say
t’. This HEC now switches control to t’ and resumes execution. The overall effect of the
operation ensures that although the thread t is blocked, t’s scheduler (and the threads that
belong to it) is not blocked.

Figure 4 illustrates the steps involved in unblocking from an RTS event. Eventually, the
disabled event e can become enabled. At this point, the RTS wakes up all of the threads
waiting on event e by invoking their enqueue activation. Suppose we want to resume the
thread t which is blocked on e. The RTS invokes t’s enqueue activation to add t to its
scheduler. Since t’s scheduler is already running, t will eventually be scheduled again.

3.2 Software transactional memory

Since Haskell computations can run in parallel on different HECs, the substrate must
provide a method for safely coordinating activities across multiple HECs. Similar to Li’s
substrate design (Li et al., 2007), we adopt transactional memory (STM), as the sole
multiprocessor synchronisation mechanism exposed by the substrate. Using transactional
memory, rather than locks and condition variables make complex concurrent programs
much more modular and less error-prone (Harris et al., 2005a) – and schedulers are prime
candidates, because they are prone to subtle concurrency bugs.
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3.3 Concurrency substrate

Now that we have motivated our design decisions, we will present the API for the con-
currency substrate. The concurrency substrate includes the primitives for instantiating and
switching between language level threads, manipulating thread local state, and an abstrac-
tion for scheduler activations. The API is presented below:

data SCont

type DequeueAct = SCont -> STM SCont

type EnqueueAct = SCont -> STM ()

-- activation interface

dequeueAct :: DequeueAct

enqueueAct :: EnqueueAct

-- SCont manipulation

newSCont :: IO () -> IO SCont

switch :: (SCont -> STM SCont) -> IO ()

runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state

setDequeueAct :: DequeueAct -> IO ()

setEnqueueAct :: EnqueueAct -> IO ()

getAux :: SCont -> STM Dynamic

setAux :: SCont -> Dynamic -> STM ()

-- HEC information

getCurrentHEC :: STM Int

getNumHECs :: IO Int

3.3.1 Activation interface

Rather than directly exposing the notion of a “thread”, the substrate offers linear contin-
uations (Bruggeman et al., 1996), which is of type SCont. An SCont is a heap-allocated
object representing the current state of a Haskell computation. In the RTS, SConts are
represented quite conventionally by a heap-allocated Thread Storage Object (TSO), which
includes the computations stack and local state, saved registers, and program counter.
Unreachable SConts are garbage collected.

The call (dequeueActs) invokes s’s dequeue activation, passing s to it like a “self”
parameter. The return type of dequeueAct indicates that the computation encapsulated
in the dequeueAct is transactional (under STM monad(STMLibrary, 2014)) which when
discharged, returns an SCont. Similarly, the call (enqueueActs) invokes the enqueue

activation transactionally, which enqueues s to its ULS.
Since the activations are under STM monad, we have the assurance that the ULS’ cannot

be built with low-level unsafe components such as locks and condition variables. Such
low-level operations would be under IO monad, which cannot be part of an STM transac-
tion. Thus, our concurrency substrate statically prevents the implementation of potentially
unsafe schedulers.
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3.3.2 SCont management

The substrate offers primitives for creating, constructing and transferring control between
SConts. The call (newSCont M) creates a new SCont that, when scheduled, executes M.
By default, the newly created SCont is associated with the ULS of the invoking thread.
This is done by copying the invoking SCont’s activations.

An SCont is scheduled (i.e., is given control of a HEC) by the switch primitive. The
call (switch M) applies M to the current continuation s. Notice that (M s) is an STM com-
putation. In a single atomic transaction switch performs the computation (M s), yielding
an SCont s′, and switches control to s′. Thus, the computation encapsulated by s′ becomes
the currently running computation on this HEC.

Our continuations are linear; resuming a running SCont raises an exception. Our imple-
mentation enforces this property by attaching a transactional status variable to each SCont.
The status of an SCont is updated from suspended to running, if the control switches
to the SCont. Correspondingly, the suspending SCont’s status is updated from running
to suspended. Since our continuations are always used linearly, capturing a continuation
simply fetches the reference to the underlying TSO object. Hence, continuation capture
involves no copying, and is cheap. Using the SCont interface, a thread yield function can
be built as follows:

yield :: IO ()

yield = switch (\s -> enqueueAct s >> dequeueAct s)

Calling the yield function switches control to the next available thread that is available
to run on the yielding thread’s scheduler.

3.4 Parallel SCont execution

When the program begins execution, a fixed number of HECs (N) is provided to it by the
environment. This signifies the maximum number of parallel computations in the program.
Of these, one of the HEC runs the main IO computation. All other HECs are in idle state.
The call runOnIdleHEC s initiates parallel execution of SCont s on an idle HEC. Once the
SCont running on a HEC finishes evaluation, the HEC moves back to the idle state. The
primitive getNumHECs and getCurrentHEC returns the number of HECs and the HEC
number of the current HEC.

Notice that the upcall from the RTS to the dequeue activation as well as the body of the
switch primitive return an SCont. This is the SCont to which the control would switch
to subsequently. But what if such an SCont cannot be found? This situation can occur
during multicore execution, when the number of available threads is less than the number
of HECs. If a HEC does not have any work to do, it better be put to sleep.

Notice that the result of the dequeue activation and the body of the switch primitive
are STM transactions. GHC today supports blocking operations under STM. When the
programmer invokes retry inside a transaction, the RTS blocks the thread until another
thread writes to any of the transactional variables read by the transaction; then the thread
is re-awoken, and retries the transaction (Harris et al., 2005a). This is entirely transparent
to the programmer. Along the same lines, we interpret the use of retry within a switch
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or dequeue activation transaction as putting the whole HEC to sleep. We use the existing
RTS mechanism to resume the thread when work becomes available on the scheduler.

3.5 SCont local state

The activations of an SCont can be read by dequeueAct and enqueueAct primitives. In
effect, they constitute the SCont-local state. Local state is often convenient for other pur-
poses, so we also provide a single dynamically-typed2 field, the “aux-field”, for arbitrary
user purposes. The aux-field can be read from and written to using the primitives getAux
and setAux. The API additionally allows an SCont to change its own scheduler through
setDequeueAct and setEnqueueAct primitives.

4 Developing concurrency libraries

In this section, we will utilise the concurrency substrate to implement a multicore capable,
round-robin, work-sharing scheduler and a user-level MVar implementation.

4.1 User-level scheduler

The first step in designing a scheduler is to describe the scheduler data structure. We shall
build a first-in-first-out (FIFO) scheduler that schedules that SCont that arrived in the
scheduler queue earliest. FIFO scheduling is useful for applications such as a web-server
that minimises the overall latency for pending requests. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by a transactional variable (a
TVar), which can hold a list of SConts.

newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the scheduler activations.

dequeueActivation :: Sched -> SCont -> STM SCont

dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number

l <- readTVar $ pa!cc

case l of

[] -> retry

x:tl -> do

writeTVar (pa!cc) tl

return x

enqueueActivation :: Sched -> SCont -> STM ()

enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

let (hec::Int , _::TVar Int) = fromJust $ fromDynamic dyn

l <- readTVar $ pa!hec

writeTVar (pa!hec) $ l++[sc]

2 http://hackage.haskell.org/package/base-4.6.0.1/docs/Data-Dynamic.html

http://hackage.haskell.org/package/base-4.6.0.1/docs/Data-Dynamic.html
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dequeueActivation either returns the SCont at the front of the runqueue and updates
the runqueue appropriately, or puts the HEC to sleep if the queue is empty. Recall that
performing retry within a dequeue activation puts the HEC to sleep. The HEC will
automatically be woken up when work becomes available i.e., queue becomes non-empty.
Although we ignore the SCont being blocked in this case, one could imagine manipulating
the blocked SCont’s aux state for accounting information such as time slices consumed for
fair-share scheduling. Enqueue activation (enqueueActivation) finds the SCont’s HEC
number by querying its SCont-local state (the details of which is presented along with the
next primitive). This HEC number (hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

4.1.1 Scheduler initialisation

The next step is to initialise the scheduler. This involves two steps: (1) allocating the
scheduler (newScheduler) and initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wishing to utilise the ULS performs
these two steps at the start of the main IO computation. The implementation of these
functions are given below:

newScheduler :: IO ()

newScheduler = do

-- Initialise Auxiliary state

myS <- switch $ \s -> do

counter <- newTVar (0:: Int)

setAux s $ toDyn $ (0::Int ,counter)

return s

-- Allocate scheduler

nc <- getNumHECs

sched <- (Sched . listArray (0,nc -1)) <$>

replicateM nc (newTVar [])

-- Initialise activations

setDequeueAct myS $ dequeueActivation sched

setEnqueueAct myS $ enqueueActivation sched

newHEC :: IO ()

newHEC = do

-- Initial task

s <- newSCont $ switch dequeueAct

-- Run in parallel

runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler). For load balancing
purposes, we will spawn threads in a round-robin fashion over the available HECs. For
this purpose, we initialise a TVar counter, and store into the auxiliary state a pair (c, t)
where c is the SCont’s home HEC and t is the counter for scheduling. Next, we allocate an
empty scheduler data structure (sched), and register the current thread with the scheduler
activations. This step binds the current thread to participate in user-level scheduling.
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All other HECs act as workers (newHEC), scheduling the threads that become available
on their runqueues. The initial task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that allocating a new SCont copies
the current SCont’s activations to the newly created SCont. In this case, the main SCont’s
activations, initialised in newScheduler, are copied to the newly allocated SCont. As a
result, the newly allocated SCont shares the same ULS with the main SCont. Finally, we
run the new SCont on a free HEC. Notice that scheduler data structure is not directly
accessed in newHEC, but accessed through the activation interface.

The Haskell program only needs to prepend the following snippet to the main IO com-
putation to utilise the ULS implementation.

main = do

newScheduler

n <- getNumHECs

replicateM_ (n-1) newHEC

... -- rest of the main code

How do we create new user-level threads in this scheduler? For this purpose, we imple-
ment a forkIO function that spawns a new user-level thread as follows:

forkIO :: IO () -> IO SCont

forkIO task = do

numHECs <- getNumHECs

-- epilogue: Switch to next thread

newSC <- newSCont (task >> switch dequeueAct)

-- Create and initialise new Aux state

switch $ \s -> do

dyn <- getAux s

let (_::Int , t::TVar Int) = fromJust $ fromDynamic dyn

nextHEC <- readTVar t

writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs

setAux newSC $ toDyn (nextHEC , t)

return s

-- Add new thread to scheduler

atomically $ enqueueAct newSC

return newSC

forkIO function spawns a new thread that runs concurrently with its parent thread. What
should happen after such a thread has run to completion? We must request the scheduler to
provide us the next thread to run. This is captured in the epilogue e, and is appended to the
given IO computation task. Next, we allocate a new SCont, which implicitly inherits the
current SCont’s scheduler activations. In order to spawn threads in a round-robin fashion,
we create a new auxiliary state for the new SCont and prepare it such that when unblocked,
the new SCont is added to the runqueue on HEC nextHEC. Finally, the newly created
SCont is added to the scheduler using its enqueue activation.

The key aspect of this forkIO function is that it does not directly access the scheduler
data structure, but does so only through the activation interface. As a result, aside from the
auxiliary state manipulation, the rest of the code pretty much can stay the same for any
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user-level forkIO function. Additionally, we can implement a yield function similar to
the one described in Section 3.3.2. Due to scheduler activations, the interaction with the
RTS concurrency mechanisms come for free, and we are done!

4.2 Scheduling algorithms

4.2.1 Last-in-first-out scheduler

A last-in-first-out (LIFO) scheduler is useful for applications such as parallel depth-first
search. We can easily modify this FIFO scheduler to perform LIFO scheduling by changing
the enqueue activation logic as follows:

enqueueActivation :: Sched -> SCont -> STM ()

enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

let (hec::Int , _::TVar Int) = fromJust $ fromDynamic dyn

l <- readTVar $ pa!hec

writeTVar (pa!hec) $ sc:l

The only change is in the last line where we add the given SCont to the head of the
scheduler instead of the tail to get the necessary behaviour.

4.2.2 Priority-based scheduler

Let us now build a FIFO priority scheduler with low and high priorities. We will save the
thread priority in the SCont-local state and use two scheduler queues in each HEC for each
of the priorities. The modification to the scheduler datastructure is as follows:

data Prio = High | Low

data PrioQueues =

PrioQueues { high :: [SCont], low :: [SCont] }

newtype Sched = Sched (Array Int (TVar PrioQueues))

We modify dequeueActivation such that it first examines the high priority queue for
Sconts before examining the low priority queue.

dequeueActivation :: Sched -> SCont -> STM SCont

dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number

q <- readTVar $ pa!cc

case high q of

[] -> case low q of

[] -> retry

x:tl -> do

let newQ = q { low = tl }

writeTVar (pa!cc) newQ

return x

x:tl -> do
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let newQ = q { high = tl }

writeTVar (pa!cc) newQ

return x

We modify enqueueActivation such that the given SCont is enqueued to the correct
queue based on its priority.

enqueueActivation :: Sched -> SCont -> STM ()

enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

let (hec::Int , prio::Prio , _::TVar Int) =

fromJust $ fromDynamic dyn

q <- readTVar $ pa!hec

let newQ = case prio of

High -> q { high = (high q)++[sc] }

Low -> q { low = (low q)++[sc] }

writeTVar (pa!hec) newQ

Observe that the priority of the SCont is obtained from its local state.
The function forkIO and newScheduler remain the same except for change to setAux

invocations, which take an additional member in the tuple for the priority. We initialise the
newly forked threads to have low priority, and provide a function for updating the priority
of an SCont:

setPriority :: SCont -> Prio -> STM ()

setPriority sc prio = do

dyn <- getAux sc

let (h::Int , _::Prio , c::TVar Int) =

fromJust $ fromDynamic dyn

setAux sc (toDyn (h, prio , c))

Using this function, an SCont can update its own priority as follows:

setPrioritySelf :: Prio -> IO ()

setPrioritySelf prio =

switch (\s -> setPriority s prio >> return s)

4.2.3 Work-stealing scheduler

Let us now implement a work-stealing scheduler by modifying the FIFO scheduler. The
scheduler works by first looking for SCont in its own HEC’s runqueue before stealing
work from other HEC’s runqueues. The only modification is to the dequeueActivation
behaviour.

dequeueActivation :: Sched -> SCont -> STM SCont

dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number

let (_,end) = bounds pa
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let targets = cc:( filter (\i -> i /= cc) [0.. end])

res <- foldM checkNext Nothing targets

case res of

Nothing -> retry

Just x -> return x

where

checkNext mx hec =

case mx of

Nothing -> checkQ hec

Just x -> return $ Just x

checkQ hec = do

l <- readTVar $ pa!hec

case l of

[] -> return Nothing

x:tl -> do

writeTVar (pa!hec) tl

return $ Just x

We create a list of HEC numbers targets where the head of the list is the current HEC
number followed by the other HEC numbers. We use the checkNext function to check the
next HEC for available work. The function checkQ checks the given HEC for available
work. Thus, by folding over the targets list with checkNext function, we first check the
current HEC for available work, followed by examining other HECs. If an SCont is found
either in the current HEC or stolen from another HEC, we switch to that SCont. Otherwise,
the switch transaction retries, putting the current HEC to sleep until work arrives. The rest
of the functions remain the same.

Observe that since the entire computation is in a transaction, if the HEC goes to sleep,
then none of the HECs have any available SCont ready to be scheduled. This avoids the
tricky sleep bugs associated with work-stealing multicore schedulers where one has to
atomically check all the available work-stealing queues, before atomically putting the HEC
to sleep. Implementing the sleep correctly without spurious or lost wakeups is quite tricky.
Using an STM for the scheduler simplifies program logic and avoids subtle concurrency
bugs.

4.3 Scheduler agnostic user-level MVars

Our scheduler activations abstracts the interface to the ULS’s. This fact can be exploited to
build scheduler agnostic implementation of user-level concurrency libraries such as MVars.
The following snippet describes the structure of an MVar implementation:

newtype MVar a = MVar (TVar (MVPState a))

data MVPState a = Full a [(a, SCont)]

| Empty [(TVar a, SCont)]

An MVar is either empty with a list of pending takers, or full with a value and a list of
pending putters. An implementation of the takeMVar function is presented below:

takeMVar :: MVar a -> IO a
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takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined

switch $ \s -> do

st <- readTVar ref

case st of

Empty ts -> do

writeTVar ref $ Empty $ enqueue ts (h,s)

dequeueAct s

Full x ts -> do

writeTVar h x

case deque ts of

Nothing -> do

writeTVar ref $ Empty emptyQueue

Just ((x’, s’), ts ’) -> do

writeTVar ref $ Full x’ ts ’

enqueueAct s’

return s

atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the queue of pending takers. If
the MVar is full, SCont consumes the value and unblocks the next waiting putter SCont,
if any. The implementation of putMVar is the dual of this implementation. Notice that
the implementation only uses the activations to block and resume the SConts interacting
through the MVar. This allows threads from different ULS’s to communicate over the same
MVar, and hence the implementation is scheduler agnostic.

5 Semantics

In this section, we present the formal semantics of the concurrency substrate primitives
introduced in Section 3.3. We will subsequently utilise the semantics to formally describe
the interaction of the ULS with the RTS in Section 6. Our semantics closely follows
the implementation. The aim of this is to precisely describe the issues with respect to
the interactions between the ULS and the RTS, and have the language to enunciate our
solutions.

5.1 Syntax

Figure 5 shows the syntax of program states. The program state P is a soup S of HECs,
and a shared heap Θ. The operator ‖ in the HEC soup is associative and commutative.
Each HEC is either idle (Idle) or a triple 〈s,M,D〉t where s is a unique identifier of the
currently executing SCont, M is the currently executing term, D represents SCont-local
state. Each HEC has an optional subscript t, which ranges over {Sleeping,Outcall}, and
represents its current state. The absence of the subscript represents a HEC that is running.
As mentioned in Section 3.4, when the program begins execution, the HEC soup has the
following configuration:

Initial HEC Soup S = 〈s,M,D〉 ‖ Idle1 ‖ . . . ‖ IdleN−1
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x,y ∈ Variable r,s ∈ Name

Md ::= return M | M >>= N

Ex ::= throw M | catch M N | catchSTM M N

Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s

Sls ::= getAux s | setAux s M

Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | λ .x −> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;Θ

HEC soup S ::= /0 | H ‖ S

HEC H ::= 〈s,M,D〉 | 〈s,M,D〉Sleeping

| 〈s,M,D〉Outcall | Idle
Heap Θ ::= r 7→M ⊕ s 7→ (M,D)

SLS Store D ::= (M,N,r)

IO Context E ::= • | E >>= M | catch E M

STM Context P ::= • | P >>= M

Fig. 5: Syntax of terms, states, contexts, and heaps

where M is the main computation, and all other HECs are idle. We represent the SCont-
local state D as a tuple with two terms and a name (M,N,r). Here, M, N, and r are the
dequeue activation, enqueue activation, and a TVar representing the auxiliary storage of
the current SCont on this HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, , ) = M enq( ,M, ) = M aux( , ,r) = r

The primitives under the collection Sls and Act in Figure 5 read from and write to the
SCont-local states. The semantics of these primitives is discussed in Section 5.5. The heap
Θ is a disjoint finite map of:

• (r 7→M), maps the identifier r of a transactional variable, or TVar, to its value.
• (s 7→ (M,D)), maps the identifier s of an SCont to its current state.

In a program state (S;Θ), an SCont with identifier s appears either as the running SCont

in a HEC 〈s,M,D〉t ∈ S, or as a binding s 7→ (M,D) in the heap Θ, but never in both.
The distinction has direct operational significance: an SCont running in a HEC has part
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of its state loaded into machine registers, whereas one in the heap is entirely passive. In
both cases, however, the term M has type IO(), modelling the fact that concurrent Haskell
threads can perform I/O.

The number of HECs remains constant, and each HEC runs one, and only one SCont.
The business of multiplexing multiple SConts onto a single HEC is what the scheduler is
for, and is organised by Haskell code using the primitives described in this section. Finally,
E and P represent the evaluation context for reduction under IO and STM monads.

s ∈ Name M ∈ Term

RTS actions a ::= Tick | ST MBlock s | RetryST M s | OC s

| OCSteal s | OCRet s M | BlockBH s | ResumeBH s

Upcalls u ::= enq s | deq

Top-level S;Θ
a

==⇒ S′;Θ′

HEC H;Θ =⇒ H ′;Θ′

Purely functional M→ N

STM s,M,D;Θ; � M′;Θ′

Upcall H;Θ
u
↪→ H ′;Θ′

Fig. 6: Transition relations

Our semantics uses different transition relations to describe the operational behaviour
under different contexts. The program makes a transition from one state to another through
the top-level program small-step transition relation: S;Θ

a
==⇒ S′;Θ′. This says that the

program makes a transition from S;Θ to S′;Θ′, possibly interacting with the underlying
RTS through action a. We return to these RTS interactions in Section 6, and we omit
a altogether if there is no interaction. The HEC transitions enable one of the HECs to
perform a step, and possibly modifying the heap as a result. Purely functional transitions
simply reduce a term, and by definition do not touch the heap.

The STM transitions are used to capture the behaviour of the HEC running a transaction.
An STM transition is of the form s;M;D;Θ�M′;Θ′, where M is the current monadic term
under evaluation, and the heap Θ binds transactional variables to their current values. The
current SCont s and its local state D are read-only. Finally, upcall transitions capture the
behaviour of handling upcalls at a HEC, and u ranges over the kind of activation. We will
come back to RTS interactions in Section 6.

5.2 Basic transitions

The basic transitions are presented in Figure 7. Rule OneHEC says that if one HEC H
can take a step with the single-HEC transition relation, then the whole machine can take
a step. As usual, we assume that the soup S is permuted to bring a runnable HEC to the
left-hand end of the soup, so that OneHEC can fire. Similarly, Rule PureStep enables
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Top-level transitions S;Θ
a

==⇒ S′;Θ′

H;Θ
a

==⇒ H ′;Θ′

H ‖ S;Θ
a

==⇒ H ′ ‖ S;Θ′
(ONEHEC)

HEC transitions H;Θ =⇒ H ′;Θ′

M→ N

〈s,E[M],D〉;Θ =⇒ 〈s,E[N],D〉;Θ

(PURESTEP)

Purely functional transitions M→ N

return N >>= M → M N (BIND)

throw N >>= M → throw N (THROW)

retry >>= M → retry (RETRY)

catch (return M) N → return M (IOCATCH)

catch (throw M) N → N M (IOCATCHEXN)

Plus the usual rules for call-by-need λ -calculus, in small-step fashion

Fig. 7: Operational semantics for basic transitions

one of the HECs to perform a purely functional transition under the evaluation context E
(defined in Figure 5). There is no action a on the arrow because this step does not interact
with the RTS. Notice that PureStep transition is only possible if the HEC is in running
state (with no subscript). The purely functional transitions M → N include β -reduction,
arithmetic expressions, case expressions, monadic operations return, bind, throw, catch,
and so on according to their standard definitions. Bind operation on the transactional
memory primitive retry simply reduces to retry (Figure 7). These primitives represent
blocking actions under transactional memory and will be dealt with in Section 6.2.

5.3 Transactional memory

Since the concurrency substrate primitives utilise STM as the sole synchronisation mecha-
nism, we will present the formal semantics of basic STM operations in this section. We will
build upon the basic STM formalism to formally describe the behaviour of concurrency
substrate primitives in the following sections. The semantics of existing STM primitives in
GHC is preserved in the new implementation.
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HEC transitions H;Θ =⇒ H ′;Θ′

s;M;D;Θ
∗
� return N;Θ′

〈s,E[atomically M],D〉; Θ =⇒
〈s,E[return N],D〉; Θ′

(TATOMIC)

s;M;D;Θ
∗
� throw N;Θ′

〈s,E[atomically M],D〉; Θ =⇒
〈s,E[throw N],D〉; Θ∪ (Θ′ \Θ)

(TTHROW)

STM transitions s,M,D;Θ; � M′;Θ′

M→ N

s;P[M];D;Θ � P[N];Θ
(TPURESTEP)

s;M;D;Θ
∗
� return M′;Θ′

s;P[catchSTM M N];D;Θ � P[return M′];Θ′
(TCATCH)

s;M;D;Θ
∗
� throw M′;Θ′

s;P[catchSTM M N];D;Θ � P[N M′];Θ∪(Θ′\Θ)
(TCEXN)

s;M;D;Θ
∗
� retry;Θ′

s;P[catchSTM M N];D;Θ � P[retry];Θ′
(TCRETRY)

r fresh

s;P[newTVar M];D;Θ � P[return r];Θ[r 7→M]
(TNEW)

s;P[readTVar r];D;Θ � P[return Θ(r)];Θ (TREAD)

s;P[writeTVar r M];D;Θ � P[return ()];Θ[r 7→M] (TWRITE)

Fig. 8: Operational semantics for software transactional memory

Figure 8 presents the semantics of non-blocking STM operations. The semantics of
blocking operations is deferred until Section 6.2. Recall that an STM transition is of the
form s;M;D;Θ � M′;Θ′, where M is the current monadic term under evaluation, and the
heap Θ binds transactional variables to their current values. The current SCont s and its
local state D are read-only, and are not used at all in this section, but will be needed when
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manipulating SCont-local state. The reduction produces a new term M′ and a new heap Θ′.
Rule TPURESTEP is similar to PURESTEP rule in Figure 7. STM allows creating (TNEW),
reading (TREAD), and writing (TWRITE) to transactional variables.

The most important rule is TATOMIC which combines multiple STM transitions into
a single program transition. The notation

∗
� stands for the transitive closure of �. The

antecedent in the rule says that if the term M can be reduced in multiple steps to return N,
possibly modifying the heap from Θ to Θ′, then M is atomically evaluated with the same
result. Thus, other HECs are not allowed to witness the intermediate effects of the transac-
tion.

The semantics of exception handling under STM is interesting (rules TCEXN and TTHROW).
Since an exception can carry a TVar allocated in the aborted transaction, the effects of the
current transaction are undone except for the newly allocated TVars. Otherwise, we would
have dangling pointer corresponding to such TVars. Rule TCRETRY simply propagates
the request to retry the transaction through the context. The act of blocking, wake up and
undoing the effects of the transaction are handled in Section 6.2.

5.4 SCont semantics

The semantics of SCont primitives are presented in Figure 9. Each SCont has a distinct
identifier s (concretely, its heap address). An SCont’s state is represented by the pair (M,D)

where M is the term under evaluation and D is the local state.
Rule NEWSCONT binds the given IO computation and a new SCont-local state pair to

a new SCont s′, and returns s′. Notice that the newly created SCont inherits the activations
of the calling SCont. This implicitly associates the new SCont with the invoking SCont’s
scheduler.

The rules for switch (SWITCHSELF, SWITCH, and SWITCHEXN) begin by atomically
evaluating the body of switch M applied to the current SCont s. If the resultant SCont is the
same as the current one (SWITCHSELF), then we simply commit the transaction and there
is nothing more to be done. If the resultant SCont s′ is different from the current SCont s
(SWITCH), we transfer control to the new SCont s′ by making it the running SCont and
saving the state of the original SCont s in the heap. If the switch primitive happens to throw
an exception, the updates by the transaction are discarded (SWITCHEXN).

Observe that the SWITCH rule gets stuck if the resultant SCont s′ does not have a binding
in Θ′. This can happen if the target SCont s′ is already running on a different HEC. This
design enforces linear use of SConts. As mentioned earlier, our implementation enforces
this property by attaching an transactional status variable to each SCont and updating it
accordingly during context switches.

The alert reader will notice that the rules for switch duplicate much of the paraphernalia
of an atomic transaction (Figure 8), but that is unavoidable because the switch to a new
continuation must form part of the same transaction as the argument computation.

5.5 Semantics of local state manipulation

In our formalisation, we represent local state D as a tuple with two terms and a name
(M,N,r) (Figure 5), where M, N and r are dequeue activation, enqueue activation, and a
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HEC transitions H;Θ =⇒ H ′;Θ′

s′ fresh r fresh D′ = (deq(D),enq(D),r)

〈s,E[newSCont M],D〉;Θ =⇒
〈s,E[return s′],D〉;Θ[s′ 7→ (M,D′)][r 7→ toDyn ()]

(NEWSCONT)

s;M s;D;Θ
∗
� return s;Θ′

〈s,E[switch M],D〉;Θ =⇒ 〈s,E[return ()],D〉;Θ′
(SWITCHSELF)

s;M s;D;Θ
∗
� return s′;Θ′[s′ 7→ (M′,D′)]

〈s,E[switch M],D〉;Θ =⇒ 〈s′,M′,D′〉;Θ′[s 7→ (E[return ()],D)]
(SWITCH)

s;M s;D;Θ
∗
� throw N;Θ′

〈s,E[switch M],D〉;Θ =⇒ 〈s,E[throw N],D〉;Θ∪ (Θ′ \Θ)
(SWITCHEXN)

Idle ‖ 〈s,E[runOnIdleHEC s′],D〉;Θ[s′ 7→ (M′,D′)] =⇒
〈s′,M′,D′〉 ‖ 〈s,E[return ()],D〉;Θ

(RUNONIDLEHEC)

〈s, return (),D〉;Θ =⇒ Idle;Θ (DONEUNIT)

〈s,throw N,D〉;Θ =⇒ Idle;Θ (DONEEXN)

Fig. 9: Operational semantics for SCont manipulation

TVar representing auxiliary storage, respectively. The precise semantics of activations and
stack-local state manipulation is given in Figure 10.

Our semantics models the auxiliary field in the SCont-local state as a TVar. It is ini-
tialised to a dynamic unit value toDyn () when an new SCont is created (rule NEWSCONT

in Figure 9). The rules SETAUXSELF and SETAUXOTHER update the aux state of a SCont
by writing to the TVar. There are two cases, depending on whether the SCont is running in
the current HEC, or is passive in the heap. The aux-state is typically used to store scheduler
accounting information, and is most likely to be updated in the activations, being invoked
by some other SCont or the RTS. This is the reason why we model aux-state as a TVar

and allow it to be modified by some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime exception. This is reasonable: one
HEC should not be poking into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct and enqueueAct prim-
itives. Invoking an SCont’s own activation is straight-forward; the activation is fetched
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HEC transitions H;Θ =⇒ H ′;Θ′

(SETDEQUEUEACT)

〈s,E[setDequeueAct M],(b,u,r)〉;Θ =⇒
〈s,E[return ()],(M,u,r)〉;Θ

(SETENQUEUEACT)

〈s,E[setEnqueueAct M],(b,u,r)〉;Θ =⇒
〈s,E[return ()],(b,M,r)〉;Θ

STM transitions s;M;D;Θ � M′;Θ′

(GETAUXSELF)

s;P[getAux s];D;Θ � P[return aux(D)];Θ

(SETAUXSELF)

s;P[setAux s M];D;Θ � P[return ()];Θ[aux(D) 7→M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;Θ � P[deq(D) s];Θ

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;Θ � P[enq(D) s];Θ

(GETAUXOTHER)

s;P[getAux s′];D;Θ[s′ 7→ (M′,D′)]�
P[return aux(D′)];Θ[s′ 7→ (M′,D′)]

(SETAUXOTHER)

s;P[setAux s′ M];D;Θ[s′ 7→ (M′,D′)]�
P[return ()];Θ[s′ 7→ (M′,D′)][aux(D′) 7→M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s′];D;Θ[s′ 7→(M′,D′)]�
P[deq(D′) s′];Θ[s′ 7→ (M′,D′)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s′];D;Θ[s′ 7→ (M′,D′)]�
P[enq(D′) s′];Θ[s′ 7→ (M′,D′)]

Fig. 10: Operational semantics for manipulating activations and auxiliary state.
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HEC transitions H;Θ
a

==⇒ H ′;Θ′

yield= switch(λ s.enq(D)s >> deq(D)s)

〈s,M,D〉;Θ
Tick
==⇒ 〈s,yield >> M,D〉;Θ

(TICK)

Fig. 11: Handling timer interrupts

from the local state and applied to the current SCont (rules INVOKEDEQUEUEACTSELF).
We do allow activations of an SCont other than the current SCont to be invoked (rule
INVOKEDEQUEUEACTOTHER and INOKEENQUEUEACTOTHER). Notice that in order
to invoke the activations of other SConts, the SCont must be passive on the heap, and
currently not running.

We allow an SCont to modify its own activations, and potentially migrate to another
ULS. In addition, updating own activations allows the initial thread evaluating the main

IO computation to initialise its activations, and to participate in user-level scheduling.
In the common use case, once an SCont’s activations are initialised, we do not expect
them to change. Hence, we do not store the activations in a TVar, but rather directly
in the underlying TSO object field. The avoids the overheads of transactional access of
activations.

6 Interaction with the RTS

The key aspect of our design is composability of ULS’s with the existing RTS concurrency
mechanisms (Section 3.1). In this section, we will describe in detail the interaction of RTS
concurrency mechanisms and the ULS’s. The formalisation brings out the tricky cases
associated with the interaction between the ULS and the RTS.

6.1 Timer interrupts

In GHC, concurrent threads are preemptively scheduled. The RTS maintains a timer that
ticks, by default, every 20ms. On a tick, the current SCont needs to be de-scheduled and
a new SCont from the scheduler needs to be scheduled. The semantics of handling timer
interrupts is shown in Figure 11.

The Tick label on the transition arrow indicates an interaction with the RTS; we call
such a label an RTS-interaction. In this case the RTS-interaction Tick indicates that the
RTS wants to signal a timer tick3. The transition here injects yield into the instruction
stream of the SCont running on this HEC, at a GC safe point, where yield behaves just
like the definition in Section 3.3.2.

3 Technically we should ensure that every HEC receives a tick, and of course our implementation
does just that, but we elide that here.



ZU064-05-FPR lwc˙paper 15 April 2016 16:34

24 Sivaramakrishnan, Harris, Marlow and Peyton Jones

6.2 STM blocking operations

HEC transitions H;Θ
a

==⇒ H ′;Θ′

(TRETRYATOMIC)

s;M;D;Θ
∗
� retry;Θ′

〈s,E[atomically M],D〉;Θ
deq
↪→ H ′;Θ′′

〈s,E[atomically M],D〉; Θ
STMBlock s
=======⇒ H ′; Θ′′

(TRESUMERETRY)

H;Θ
enq s
↪→ H ′;Θ′

H;Θ
RetrySTM s
=======⇒ H ′;Θ′

(TRETRYSWITCH)

s;M s;D;Θ
∗
� retry;Θ′

〈s,E[switch M],D〉;Θ
STMBlock s
=======⇒ 〈s,E[switch M],D〉Sleeping;Θ

(TWAKEUP)

〈s,E[M],D〉Sleeping;Θ
RetrySTM s
=======⇒ 〈s,E[M],D〉;Θ

Fig. 12: STM Retry

As mentioned before (Section 3.4), STM supports blocking operations through the retry
primitive. Figure 12 gives the semantics for STM retry operation.

6.2.1 Blocking the SCont

Rule TRETRYATOMIC is similar to TTHROW in Figure 8. It runs the transaction body
M; if the latter terminates with retry, it abandons the effects embodied in Θ′, reverting

to Θ. But, unlike TTHROW it then uses an auxiliary rule
deq
↪→ , defined in Figure 13, to

fetch the next SCont to switch to. The transition in TRETRYATOMIC is labelled with the
RTS interaction STMBlock s, indicating that the RTS assumes responsibility for s after the
reduction.

The rules presented in Figure 13 are the key rules in abstracting the interface between
the ULS and the RTS, and describe the invocation of upcalls. In the sequel, we will often
refer to these rules in describing the semantics of the RTS interactions. Rule UPDEQUEUE

in Figure 13 stashes s (the SCont to be blocked) in the heap Θ, instantiates an ephemeral
SCont that fetches the dequeue activation b from s’s local state D, and switches to the
SCont returned by the dequeue activation. s′ is made the running SCont on this HEC.
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Dequeue upcall instantiation H;Θ
deq
↪→ H ′;Θ′

(UPDEQUEUE)

s′ fresh r fresh D′ = (deq(D),enq(D),r)

M′ = switch (λx.deq(D) s)

Θ′ = Θ[s 7→ (M,D)][r 7→ toDyn ()]

〈s,M,D〉;Θ
deq
↪→ 〈s′,M′,D′〉;Θ′

Enqueue upcall instantiation H;Θ
enq s
↪→ H ′;Θ′

(UPENQUEUEIDLE)

s′ fresh r fresh D′ = (deq(D),enq(D),r)

M′ = atomically (enq(D) s)

Θ′ = Θ[s 7→ (M,D)][r 7→ toDyn ()]

Idle;Θ[s 7→ (M,D)]
enq s
↪→ 〈s′,M′,D′〉;Θ′

(UPENQUEUERUNNING)

M′′ = atomically (enq(D) s) >> M′

〈s′,M′,D′〉;Θ[s 7→ (M,D)]
enq s
↪→ 〈s′,M′′,D′〉;Θ[s 7→ (M,D)]

Fig. 13: Instantiating upcalls

It is necessary that the dequeue upcall be performed on a new SCont s′, and not on the
SCont s being blocked. At the point of invocation of the dequeue upcall, the RTS believes
that the blocked SCont s is completely owned by the RTS, not running, and available to
be resumed. Invoking the dequeue upcall on the blocked SCont s can lead to a race on s
between multiple HECs if s happens to be unblocked and enqueued to the scheduler before
the switch transaction is completed.

6.2.2 Resuming the SCont

Some time later, the RTS will see that some thread has written to one of the TVars read by
s’s transaction, so it will signal an RetrySTM s interaction (rule TRESUMERETRY). Again,
we use an auxiliary transition

enq s
↪→ to enqueue the SCont to its scheduler (Figure 13).

Unlike
deq
↪→ transition, unblocking an SCont has nothing to do with the computation

currently running on any HEC. If we find an idle HEC (rule UPENQUEUEIDLE), we
instantiate a new ephemeral SCont s′ to enqueue the SCont s. The actual unblock operation
is achieved by fetching SCont s’s enqueue activation, applying it to s and atomically
performing the resultant STM computation. If we do not find any idle HECs (rule UPEN-
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QUEUERUNNING), we pick one of the running HECs, prepare it such that it first unblocks
the SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup

Recall that invoking retry within a switch transaction or dequeue activation puts the
HEC to sleep (Section 3.4). Also, notice that the dequeue activation is always invoked by
the RTS from a switch transaction (Rule UPDEQUEUE). This motivates rule TRETRYSWITCH:
if a switch transaction blocks, we put the whole HEC to sleep. Then, dual to TRE-
SUMERETRY, rule TWAKEUP wakes up the HEC when the RTS sees that the transaction
may now be able to make progress.

6.2.4 Implementation of upcalls

Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in Figure 13 instantiate a fresh
SCont. The freshly instantiated SCont performs just a single transaction; switch in UP-
DEQUEUE and atomically in UPENQUEUEIDLE, after which it is garbage-collected.
Since instantiating a fresh SCont for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls. It is worth mentioning that we
need an “upcall SCont pool” rather than a single “upcall SCont” since the upcall transac-
tions can themselves get blocked synchronously on STM retry as well as asynchronously
due to optimisations for lazy evaluation (Section 6.5).

6.3 Safe foreign function calls

Foreign calls in GHC are highly efficient but intricately interact with the scheduler (Marlow
et al., 2004). Much of the efficiency owes to the RTS’s task model. Each HEC is animated
by one of a pool of tasks (OS threads); the current task may become blocked in a foreign
call (e.g., a blocking I/O operation), in which case another task takes over the HEC.
However, at most only one task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-foreign call only blocks the
Haskell thread (and the task) making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the thread (and the task) on every
foreign call as most invocations are expected to return in a timely fashion. In this section,
we will discuss the interaction of safe-foreign function calls and the ULS. In particular, we
restrict the discussion to outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows us to delegate much of
the work involved in safe foreign call to the RTS. We only need to deal with the ULS
interaction, and not the creation and coordination of tasks. The semantics of foreign call
handling is presented in Figure 14. Rule OCBLOCK illustrates that the HEC performing
the foreign call moves into the Outcall state, where it is no longer runnable. In the fast path
(rule OCRETFAST), the foreign call returns immediately with the result M, and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of task switching and resume
the scheduler (rule OCSTEAL). The scheduler is resumed using the dequeue upcall. Once
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HEC transitions H;Θ
a

==⇒ H ′;Θ′

〈s,E[outcall r],D〉;Θ
OC s
===⇒

〈s,E[outcall r],D〉Outcall;Θ
(OCBLOCK)

〈s,E[outcall r],D〉Outcall;Θ
OCRet s M
======⇒

〈s,E[M],D〉;Θ
(OCRETFAST)

〈s,M,D〉;Θ
deq
↪→ H ′;Θ′

〈s,M,D〉Outcall;Θ
OCSteal s
======⇒ H ′;Θ′

(OCSTEAL)

H;Θ[s 7→ (E[M],D)]
enq s
↪→ H ′;Θ′

H;Θ[s 7→ (E[outcall r],D)]
OCRet s M
======⇒ H ′;Θ′

(OCRETSLOW)

Fig. 14: Safe foreign call transitions

the foreign call eventually returns, the SCont s blocked on the foreign call can be resumed.
Since we have already resumed the scheduler, the correct behaviour is to prepare the SCont
s with the result and add it to its ULS. Rule OCRETSLOW achieves this through enqueue
upcall.

6.4 Timer interrupts and transactions

What if a timer interrupt occurs during a transaction? The (TICK) rule of Section 6.1 is
restricted to HEC transitions, and says nothing about STM transitions. One possibility
(Plan A) is that transactions should not be interrupted, and ticks should only be delivered
at the end. This is faithful to the semantics expressed by the rule, but it does mean that a
rogue transaction could completely monopolise a HEC.

An alternative possibility (Plan B) is for the RTS to roll the transaction back to the
beginning, and then deliver the tick using rule (TICK). That too is implementable, but this
time the risk is that a slightly-too-long transaction would always be rolled back, so it would
never make progress.

Our implementation behaves like Plan B, but gives better progress guarantees, while
respecting the same semantics. Rather than rolling the transaction back, the RTS suspends
the transaction mid-flight. None of its effects are visible to other SConts; they are confined
to its SCont-local transaction log. When the SCont is later resumed, the transaction contin-
ues from where it left off, rather than starting from scratch. Of course, time has gone by, so
when it finally tries to commit there is a higher chance of failure, but at least uncontended
access will go through.
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HEC transitions H;Θ
a

==⇒ H ′;Θ′

〈s,M,D〉;Θ
deq
↪→ H ′;Θ′

〈s,M,D〉; Θ
BlockBH s
======⇒ H ′; Θ′

(BLOCKBH)

H;Θ
enq s
↪→ H ′;Θ′

H;Θ
ResumeBH s
=======⇒ H ′;Θ′

(RESUMEBH)

Fig. 15: Black holes

That is fine for vanilla atomically transactions. But what about the special transactions
run by switch? If we are in the middle of a switch transaction, and suspend it to deliver
a timer interrupt, rule (TICK) will initiate . . . a switch transaction! And that transaction is
likely to run the very same code that has just been interrupted. It seems much simpler to
revert to Plan A: the RTS does not deliver timer interrupts during a switch transaction. If
the scheduler has rogue code, then it will monopolise the HEC with no recourse.

6.5 Black holes

In a concurrent Haskell program, a thread A may attempt to evaluate a thunk x that is
already being evaluated by another thread B. To avoid duplicate evaluation the RTS (in
intimate cooperation with the compiler) arranges for B to blackhole the thunk when it
starts to evaluate x. Then, when A attempts to evaluate x, it finds a black hole, so the RTS
enqueues A to await its completion. When B finishes evaluating x it updates the black
hole with its value, and makes any queued threads runnable. This mechanism, and its
implementation on a multicore, is described in detail in earlier work (Harris et al., 2005b).

Clearly this is another place where the RTS may initiate blocking. We can describe the
common case with rules similar to those of Figure 12, with rules shown in Figure 15. The
RTS initiates the process with a BlockBH s action, taking ownership of the SCont s. Later,
when the evaluation of the thunk is complete, the RTS initiate an action ResumeBH s,
which returns ownership to s’s scheduler.

But these rules only apply to HEC transitions, outside transactions. What if a black hole
is encountered during an STM transaction? We addressed this same question in the context
of timer interrupts, in Section 6.4, and we adopt the same solution. The RTS behaves as
if the black-hole suspension and resumption occurred just before the transaction, but the
implementation actually arranges to resume the transaction from where it left off.

Just as in Section 6.4, we need to take particular care with switch transactions. Suppose
a switch transaction encounters a black-holed thunk under evaluation by some other
SCont B; and suppose we try to suspend the transaction (either mid-flight or with roll-

back) using rule (BLOCKBH). Then the very next thing we will do (courtesy of
deq
↪→ ) is a

switch transaction; and that is very likely to encounter the very same thunk. Moreover, it
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is just possible that the thunk is under evaluation by an SCont in this very scheduler’s run-
queue, so the black hole is preventing us from scheduling the very SCont that is evaluating
it. Deadlock beckons!

In the case of timer interrupts we solved the problem by switching them off in switch

transactions, and it turns out that we can effectively do the same for thunks. Since we can-
not sensibly suspend the switch transaction, we must find a way for it to make progress.
Fortunately, GHC’s RTS allows us to steal the thunk from the SCont that is evaluating it,
and that suffices. The details are beyond the scope of this paper, but the key moving parts
are already part of GHC’s implementation of asynchronous exceptions (Marlow et al.,
2001; Reid, 1999).

6.6 Interaction with RTS MVars

An added advantage of our scheduler activation interface is that we are able to reuse
the existing MVar implementation in the RTS. Whenever an SCont s needs to block on

or unblock from an MVar, the RTS invokes the
deq
↪→ or

enq s
↪→ upcall, respectively. This

significantly reduces the burden of migrating to a ULS implementation.

6.7 Asynchronous exceptions

GHC’s supports asynchronous exceptions in which one thread can send an asynchronous
interrupt to another (Marlow et al., 2001). This is a very tricky area; for example, if a thread
is blocked on a user-level MVar (Section 4.3), and receives an exception, it should wake up
and do something — even though it is linked onto an unknown queue of blocked threads.
Our implementation does in fact handle asynchronous exceptions. However, we are not yet
happy with the details of the design, and elide presenting the design in this paper.

6.8 On the correctness of user-level schedulers

While the concurrency substrate exposes the ability to build ULS’s, the onus is on the
scheduler implementation to ensure that it is sensible. The invariants such as not switching
to a running thread, or a thread blocked in the RTS, are not statically enforced by the
concurrency substrate, and care must be taken to preserve these invariants. Our implemen-
tation dynamically enforces such invariants through runtime assertions. We also expect
that the activations do not raise an exception that escape the activation. Activations raising
exceptions indicates an error in the ULS implementation, and the substrate simply reports
an error to the standard error stream.

The fact that the scheduler itself is now implemented in user-space complicates error
recovery and reporting when threads become unreachable. A thread suspended on an ULS
may become unreachable if the scheduler data structure holding it becomes unreachable.
A thread indefinitely blocked on an RTS MVar operation is raised with an exception and
added to its ULS. This helps the corresponding thread from recovering from indefinitely
blocking on an MVar operation.

However, the situation is worse if the ULS itself becomes unreachable; there is no
scheduler to run this thread! Hence, salvaging such a thread is not possible. In this case,
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immediately after garbage collection, our implementation logs an error message to the
standard error stream along with the unreachable SCont (thread) identifier.

7 Results

Our implementation, which we call Lightweight Concurrency (LWC) GHC, is a fork of
GHC,4 and supports all of the features discussed in the paper. We have been very particular
not to compromise on any of the existing features in GHC. As shown in Section 4, porting
existing concurrent Haskell program to utilise a ULS only involves few additional lines of
code.

In order to evaluate the performance and quantify the overheads of the LWC substrate,
we picked the following Haskell concurrency benchmarks from The Computer Language
Benchmarks Game (Shootout, 2014): k-nucleotide, mandelbrot, spectral-norm and
chameneos-redux. We also implemented a concurrent prime number generator using
sieve of Eratosthenes (primes-sieve), where the threads communicate over the MVars.
For our experiments, we generated the first 10000 primes. The benchmarks offer varying
degrees of parallelisation opportunity. k-nucleotide, mandelbrot and spectral-norm

are computation intensive, while chameneos-redux and primes-sieve are communica-
tion intensive and are specifically intended to test the overheads of thread synchronisation.

The LWC version of the benchmarks utilised the scheduler and the MVar implementa-
tion described in Section 4, except that instead of utilising a list to represent the queue,
we use a functional double-ended queue similar to the one in Data.Sequence. For com-
parison, the benchmark programs were also implemented using Control.Concurrent

on a vanilla GHC implementation. The default thread scheduler of GHC uses one sched-
uler queue per HEC, where threads are initially spawned on the same HEC and work is
shared between the HECs at the end of minor collections. Recall that vanilla GHC’s thread
scheduler is implemented in the RTS and incorporates a number of heuristics for improv-
ing throughput, whereas the ULS is a simple round-robin scheduler. Experiments were
performed on a 48-core AMD Opteron server, and the GHC version was 7.7.20130523.

The performance results are presented in Figure 16. We vary the number of HECs and
measure the running time. All the times reported are in seconds. For each benchmark, we
also measure the baseline numbers using the vanilla GHC program compiled without the
-threaded option. This non-threaded baseline does not support multi-processor execution
of concurrent programs, but also does not include the mechanisms necessary for (and the
overheads included in) multi-processor synchronisation. Hence, the non-threaded version
of a program running on 1 processor is faster than the corresponding threaded version.

In k-nucleotide and spectral-norm benchmarks, the performance of the LWC ver-
sion was indistinguishable from the vanilla version. The threaded versions of the bench-
mark programs were fastest on 8 HECs and 48 HECs on k-nucleotide and spectral-

norm, respectively. In mandelbrot benchmark, the LWC version was 2× faster than the
vanilla version. While the vanilla version was 12× faster than the baseline, the LWC
version was 24× faster. In the vanilla GHC, the RTS thread scheduler by default spawns

4 The development branch of LWC substrate is available at https://github.com/ghc/ghc/
tree/ghc-lwc2

https://github.com/ghc/ghc/tree/ghc-lwc2
https://github.com/ghc/ghc/tree/ghc-lwc2
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Fig. 16: Performance comparison of vanilla GHC vs LWC GHC.

a thread on the current HEC and only shares the thread with other HECs if they are idle.
The LWC scheduler (described in Section 4) spawns threads by default in a round-robin
fashion on all HECs. This simple scheme happens to work better in mandelbrot since the
program is embarrassingly parallel.

In chameneos-redux benchmark (note that the y-axis is in logarithmic scale), the LWC
version was 3.9× slower than the baseline on 1 HEC and 2.6× slower on 2 HECs, and
slows down with additional HECs as chameneos-redux does not present much paralleli-
sation opportunity. The vanilla chameneos-redux program was fastest on 1 HEC, and
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was 1.24× slower than the baseline. With additional HECs, the vanilla version the default
work-stealing algorithm baked into the runtime system brings all of the threads to a single
HEC and performs sub-optimal scheduling. The performance continues to worsen with
additional HECs.

In primes-sieve benchmark, while the LWC version was 6.8× slower on one HEC,
the vanilla version was 1.3X slower, when compared to the baseline. The vanilla version
is fastest on 1 HEC and slows down with additional HECs similar to chameneos-redux

benchmark. In chameneos-redux and primes-sieve, we observed that the LWC im-
plementation spends around half of its execution running the transactions for invoking the
activations or MVar operations. Additionally, in these benchmarks, LWC version performs
3X-8× more allocations than the vanilla version. Most of these allocations are due to
the data structure used in the ULS and the MVar queues. In the vanilla primes-sieve

implementation, these overheads are negligible. This is an unavoidable consequence of
implementing concurrency libraries in Haskell.

Luckily, these overheads are parallelisable. In primes-sieve benchmark, while the
vanilla version was fastest on 1 HEC, LWC version scaled to 48 HECs, and was 2.37×
faster than the baseline program. This gives us the confidence that with careful optimisa-
tions and application specific heuristics for the ULS and the MVar implementation, much
of the overheads in the LWC version can be eliminated.

8 Related Work

8.1 Language Runtimes

The idea of continuation based concurrency was initially explored in the context of Lisp (Wand,
1980) and Scheme, a lexically scoped dialect of Lisp that supports first-class continua-
tions. Shivers (Shivers, 1997) proposed exposing hardware concurrency using continua-
tions (Shivers, 1997). The Engines (Dybvig & Hieb, 1989; Haynes & Friedman, 1987) con-
struct incorporated into some Scheme implementations allow preemptive multithreading to
be incorporated into languages that support first-class continuations and timer interrupts.
The idea is to re-define the lambda binder to maintain a timer (essentially counting the
number of function calls made) that is then used to interrupt a thread when a certain
number of reductions have occurred. These early works serve as the basis of several con-
temporary parallel and concurrent programming language implementations (Reppy, 2007;
Reppy et al., 2009; Sivaramakrishnan et al., 2014; GHC, 2014). Among these, Concur-
rentML (Reppy, 2007) implementations on SML/NJ and MLton, and MultiMLton (Sivara-
makrishnan et al., 2014) do not expose the ability to describe alternative ULS’s. Fluet
et al. (Fluet et al., 2008) propose a scheduling framework for a strict parallel functional
language on Manticore (Reppy et al., 2009). However, unlike our system, the schedulers
are described in an external language of the compiler’s internal representation, and not the
source language.

The proposed multicore extension to OCaml (Dolan et al., 2015) incorporate one-shot
unchecked algebraic effects and handlers into the language. Algebraic effects and their
handlers behave similar to restartable exceptions, and can be used to implement interesting
control flow operations. One of the key use cases of the proposed extension is to allow
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thread schedulers to be written in OCaml, using a one-shot continuation interface. The
continuations are managed as heap objects similar to our system. However, unlike our
system, the synchronisation between multiple cores is achieved using low-level hardware
synchronisation primitives such as compare-and-swap. Unlike GHC, which implements
safe FFI support in the runtime, the standard solution for asynchronous IO in OCaml is to
use monadic concurrency libraries such as Lwt (Vouillon, 2008) and Async (Async, 2015).
Such libraries use an event loop in the backend, and are completely managed in the user-
space. With the introduction of continuation-based user-level threading, such libraries need
to be updated individually to reconcile their use of monadic concurrency with continuation-
based user-level threads. On the other hand, with our system, the asynchronous IO libraries
in Haskell need not be rewritten as the behaviour GHC’s FFI is preserved with scheduler
activations. Finally, OCaml being a strict language, unlike our system, does not have to
deal with blackholding issues under user-level scheduling.

Of the meta-circular implementations of Java, Jikes RVM (Frampton et al., 2009) is
perhaps the most mature. Jikes does not support user-level threads, and maps each Java
thread directly onto a native thread, which are arbitrarily scheduled by the OS. This de-
cision is partly motivated to offer better compatibility with Java Native Interface (JNI),
the foreign function interface in Java. Thread-processor mapping is also transparent to the
programmer. Jikes supports unsafe low-level operations to block and synchronise threads
in order to implement other operations such as garbage collection. Compared to Jikes,
our concurrency substrate only permits safe interaction with the scheduler through the
STM interface. The ULS’s also integrates well with GHC’s safe foreign-function interface
through the activation interface (Section 6.3).

While Manticore (Reppy et al., 2009), and MultiMLton (Sivaramakrishnan et al., 2014)
utilise low-level compare-and-swap operation as the core synchronisation primitive, Li
et al.’s concurrency substrate (Li et al., 2007) for GHC was the first to utilise transac-
tional memory for multiprocessor synchronisation for in the context of ULS’s. Our work
borrows the idea of using STM for synchronisation. Unlike Li’s substrate, we retain the
key components of the concurrency support in the runtime system. Not only does this
alleviate the burden of implementing the ULS, but enables us to safely handle the issue
of blackholes that requires RTS support, and perform blocking operations under STM. In
addition, Li’s substrate work uses explicit wake up calls for unblocking sleeping HECs.
This design has potential for bugs due to forgotten wake up messages. Our HEC blocking
mechanism directly utilises STM blocking capability provided by the runtime system, and
by construction eliminates the possibility of forgotten wake up messages.

While we argue that scheduler activations are a good fit for coarse-grained concurrent
programs, where application specific tuning is beneficial, it is unclear whether the tech-
nique is useful for fine-grained parallelism found in GHC’s Evaluation Strategies (Marlow,
Simon and Maier, Patrick and Loidl, Hans-Wolfgang and Aswad, Mustafa K. and Trinder,
Phil, 2010) and Parallel ML (Fluet et al., 2010). The goal here is to annotate programs
with potential opportunities for parallelism, and let the runtime automatically decide to run
the fine-grained computations on idle cores. Since the goal with implicit parallelism is to
utilise idle cores for parallel speedup, this decision is best left to the runtime system, which
is capable of making this decision, without much bookkeeping overhead.
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8.2 Operating Systems

Scheduler activations were first conceived by Anderson et al. (Anderson et al., 1991) to
allow user-level threads to safely interact with kernel services. With the help of an interrupt
mechanism, the kernel notifies the user-level thread of any changes such as blocking events.
Scheduler activations have successfully been demonstrated to interface kernel with the
user-level process scheduler (Williams, 2002; Baumann et al., 2009). Similar to scheduler
activations, Psyche (Marsh et al., 1991) allows user-level threads to install event handlers
for scheduler interrupts and implement the scheduling logic in user-space. Unlike these
works, our system utilises scheduler activations in the language runtime rather than OS
kernel. Moreover, our activations being STM computations allow them to be composed
with other language level transactions in Haskell, enabling scheduler-agnostic concurrency
library implementations.

The idea of scheduler activations recurs frequently in the case of virtual machines and
operating systems implemented in high-level languages. Sting (Philbin, 1993) is an operat-
ing system designed to serve as a highly efficient substrate for high-level programming
languages such as Scheme, SmallTalk, ML, Modula3, or Haskell. Sting uses a thread
controller that handles the virtual processor’s interaction with other system components
such as physical processors and threads. Sting uses continuations to model suspended
threads that are blocked on some kernel events, and uses activations to notify blocking
and unblocking events. A thread policy manager dictates the thread scheduling policy, and
is highly customizable. This design is analogous to the user-level thread scheduler in our
system.

SPIN (Bershad et al., 1995) is an operating system that can be customised through
dynamic installation of kernel extensions written in the high-level language Modula-3. By
suitably restricting Modula-3 code and performing static and dynamic verification, SPIN
allows safe kernel extensions. While SPIN allowed user-level scheduler extensions that are
executed in kernel space, it is not possible to replace the default scheduler.

House (Hallgren et al., 2005) describes a monadic interface to low-level hardware fea-
tures that is a suitable basis for building operating systems in Haskell. At its core is the H

monad, which can be thought of as a specialised version of a Haskell IO monad, suitable for
supporting programs that run in the machine’s privileged (supervisor) mode. House sup-
ports two modes of concurrency – implicit and explicit. While implicit concurrency uses
concurrent Haskell as the kernel, resorting to GHC’s threading primitives for concurrency,
explicit concurrency is supported by maintaining a queue of context objects that capture the
state of the virtual processor. The contexts are analogous to continuations in our system,
and capture the state of the suspended virtual processor. With explicit concurrency, the
programmer has the ability to control scheduling but interrupts must be polled for. While
monadic concurrency is explicit and suitable for simple programs, one has to resort to
monad transformers with larger programs, which can quickly become unwieldy. Unlike
the H monad, the execution of user-space programs with scheduler activations avoids ab-
straction leaks; programs execute transparently on top of the kernels and interface through
the activations. Moreover, House does not support multiprocessor execution, which can
complicate the execution of interrupt handlers with shared resources.
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Recently, there has been a lot of interest in Unikernels (Madhavapeddy & Scott, 2014)
– specialised, single address space machine images constructed by using library operat-
ing systems, typically implemented in high-level languages. HalVM (Galois, 2014) is a
Haskell-based unikernel that run directly on top of Xen hypervisor. HalVM uses GHC’s
native threads for concurrency and thus cannot do custom scheduling and thread priorities.
MirageOS (Madhavapeddy et al., 2013) is a unikernel implemented in OCaml, and uses
monadic Lwt threads (Vouillon, 2008) for cooperative concurrency. Lwt allows plugging
in custom engines for defining specialised scheduling policies. However, neither HalVM
nor MirageOS supports multiprocessor execution.

9 Conclusions and Future Work

We have presented a concurrency substrate design for Haskell that lets programmers write
schedulers for Haskell threads as ordinary libraries in Haskell. Through an activation inter-
face, this design lets GHC’s runtime system to safely interact with the user-level scheduler,
and therefore tempering the complexity of implementing full-fledged schedulers. The fact
that many of the RTS interactions such as timer interrupts, STM blocking operation, safe
foreign function calls, etc,. can be captured through the activation interface reaffirms the
idea that we are on the right track with the abstraction.

Our precise formalisation of the RTS interactions served as a very good design tool and
a validation mechanism, and helped us gain insights into subtle interactions between the
ULS and the RTS. Through the formalisation, we realised that the interaction of black holes
and timer interrupts with a scheduler transaction is particularly tricky, and must be handled
explicitly by the RTS in order to avoid livelock and deadlock. As for the implementation,
we would like to explore the effectiveness of user-level gang scheduling for Data Parallel
Haskell (Chakravarty et al., 2007) workloads, and priority scheduling for Haskell based
web-servers (Haskell, 2014) and virtual machines (Galois, 2014).
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