EMERGING TECHNOLOGIES REFINERIES: HURRICANES

Leonardo P. Garzon, P.E.

DeSimone Consulting Engineers Miami, Florida, USA

Richard K. Ladroga, P.E.

DeSimone Consulting Engineers New York, New York, USA

oss events worldwide 2017

Munich RE

Geographical overview

- Geophysical events
- extratropical storm, Meteorological events convective storm. local storm) (Tropical storm,
- Hydrological events (Flood, mass movement)
- Climatological events drought, wildfire) (Extreme temperature,
- Loss events
- catastrophes Selection of

2017 Atlantic H

SEASONAL OUTLOOK

Named storms

14 - 19

Hurricanes

5 - 9

Major Hurricanes

2 - 5

ACTUAL

Named storms

_

Hurricanes

10

Major Hurricanes

တ

DESIMONE

In Houston, dams and heavy rainfall leading to flood gates due to the reservoirs opened their

Hurricanes & Flood Protection

Component of Risk

- Hazard
- Exposure Vulnerability

Flood Mitigation

Houston Refinery Example

Houston Petrochemical Industry Example

Source: Google Earth & FEMA

Regulatory Floodway 1% Annual Chance Flood Hazard

Special Floodway

Area of Undetermined Flood Hazard

0.2% Annual Chance Flood Hazard

Future Conditions 1% Annual Chance Flood Hazard

Area with Reduced Risk Due to Levee

Crude Oil and Petrochemical Tanks - Identify Vulnerabilities

Approximate equivalent wind pressure: 35 to 50 psf

Number of failed tanks during Harvey: 145,000 gallons (24 tanks approximately).

Tanks - Significant Vulnerability

How to Protect - Flood Walls

 $0.55 d_s$

Stillwater level

Crest of incident wave

Design Loads:

- Hydrostatic pressure
- Dynamic pressure (Wave action).
- Wind pressure.
- Debris impact.

DESIMONE

Ground elevation

Sheet Piling Top of SSP Approx+19'-0" NAVD

Flood Walls

Levees

DESIMONE

Source: FEMA

Top Refinery Technologies

- DIGITAL SYSTEMS
- ARTIFICIAL INTELLIGENCE
- DRONES

- TREND NO. 1: Only 19% recognize digital systems as one of their top 3 priorities.
- •57% stated that current levels of investment are greater than they were 12 months previous
- .62% indicated they intend to invest "more" or "significantly more" over the course of the next 3-5 years

* Based on survey of over 200 refinery professionals worldwide

- •TREND NO. 2: Analytics is number one for performance followed by cyber security
- Analytics (including big data) is overwhelming choice for digital technology that will impact performance
- Cybersecurity viewed as one of the top digital technologies affecting operational ops) performance. (Necessary to offset increased network connectivity supporting refinery

* Based on survey of over 200 refinery professionals worldwide

- TREND NO. 3: National Oil Companies (NOCs) leading the way in digital maturity.
- •Roughly 25% making significantly higher investments in past 12 months
- 89% of refiners consider themselves still digitally immature.
- NOCs rank higher 20% indicate maturity

* Based on survey of over 200 refinery professionals worldwide

- •TREND NO. 4: It's no longer "Can refiners afford to", but instead "Can they afford not to?"
- •40% of refiners cite operating costs as their top priority yet half of refiners cite cost as predominant barrier to digital implementation.

* Based on survey of over 200 refinery professionals worldwide

- •TREND NO. 5: Digital benefits are clear; the ability to realize them is not.
- 38% of refiners cite lack of digital strategy as barrier.
- Value—add proposition difficult to develop without solid business case.

* Based on survey of over 200 refinery professionals worldwide

Cultural Paradox Paradigm

- Digital requires senior executive leadership, vision, and proof of concepts that quickly lead to scaled programs focused on maximizing return on investment.
- Companies need to drive a culture of innovation and technology adoption parallel focus on OT & IT | മ
- Investment in human capital and development programs are needed to promote new, digital thinking and new ways of working.
- Digital strategy required for solid business case. Decision matrices, profitability increase, risk reduction, increased output, etc. Is the cost worth the gain?

DIGITAL TECHNOLOGIES - EXAMPLES

Sensors - Continuous monitoring vs scheduled monitoring

- Moisture
- Dissolved Gas Analysis Chromatography
- Pressure
- Temperature
- Electrical
- Hysteresis
- Position
- Flow
- Molecular Composition

Digital Technologies - Summary

- The current state of the oil and gas market is forcing companies to reinvent themselves to improve productivity and profitability.
- · Investing in digital technologies is a sound move that can significantly increase efficiency and production with existing operations, reduce operating costs, increase revenue generation, while also increasing reliability and minimizing risk.

The Future is Already Here

PANDORA
NETFLIX
AMAZON
SIRI
ALEXA
TESLA
FACEBOOK
GOOGLE
TWITTER
SALESFORCE
INTEL
APPLE

Artificial Intelligence Technologies - Downstream

- •Al on target to eclipse human intelligence by 2029 The future is here
- Predictive maintenance models used to avoid failure and unplanned outages
- Massive productivity gains attributed to plant & process optimization
- Optimize processing cycles and transportation
- Analyze weather patterns, economic dispatch

Artificial Intelligence in Oil & Gas - Upstream

- Equipment Ratings
- Seismic Vibrations
- Strata Permeability
- Thermal Gradients
- · All can be layered and used to determine optimal drill direction, depth, and rate.
- Identify new well locations Al used to assess historical well performance data production increase 30%
- Billions in revenues at stake

Impact of Artificial Intelligence on Oil & Gas Industry

In upstream only, there is around USD 50bn at stake

Drone Technologies - Refineries

- Tank roof inspections
- Vessel inspections
- Tower inspections.
- Thermographic inspections
- Flare stack inspections
- Flare re-ignition
- Contamination area inspections

Drone Usage at Refineries

Drone Usage at Refineries

WIND FARM - PUNTA LIMA, PUERTO RICO

Drone Technologies

Unmanned Aerial Vehicles (UAVs) usage expanding exponentially

climbing, much less costly than helicopters. Visually inspect flares tips — Tough locations such as the North Sea — safer than

Visually inspect:

- Pipelines
- Tanks
- Electrical Apparatus
- Flares
- Facilities Inspections

Technology Advancements

Major players marrying drone technology to Al

- General Electric, Siemens, IBM, ABB, others
- \$100B USD by 2020
- UAVs
- Robot Crawlers
- Thermal Scanning & Imaging
- Laser Measurements
- Pipeline Leakage Sensors
- Electro Magnetic Interference
- Ambulance
- Taxis

DRONE TAXI

DRONE TAXI

DRONE AMBULANCE

Common Mode Failure: Human Factors

- Technology is only effective, safe, and useful if it is managed properly.
- Human Factor Engineering Improve technology to prevent human error as a causal factor

Andrew Hopkins (Failure To Learn) "Awful Sameness"

- Corporate cost cutting
- Failure to invest in plant infrastructure
- Lack of corporate oversight
- Lack of process safety
- Inadequate training
- Incompetent supervision
- Poor communications
- Poor decision making
- Aged, broken, or inop controls, gauges, indicators
- Lack of maintenance spending, equipment repair & replacement

LANDSLIDES AND FLASH FLOODS

FLASH FLOOD TO OCEAN

CAR BLOWN OFF MOUNTAINSIDE

STROLL IN THE NEIGHBORHOOD

RASTA BUCKET MON

CALM AFTER THE STORM

& EMERGING TECHNOLOGIES REFINERIES: HURRICANES

Leonardo P. Garzon, P.E.

DeSimone Consulting Engineers

Miami, Florida, USA

Richard K. Ladroga, P.E.

DeSimone Consulting Engineers

New York, New York, USA

March 19, 2018