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Abstract
It is common for compilers to derive the calling convention of a
function from its type. Doing so is simple and modular but misses
many optimisation opportunities, particularly in lazy, higher-order
functional languages with extensive use of currying. We restore the
lost opportunities by defining Strict Core, a new intermediate lan-
guage whose type system makes the missing distinctions: laziness
is explicit, and functions take multiple arguments and return multi-
ple results.

1. Introduction
In the implementation of a lazy functional programming language,
imagine that you are given the following function:

f :: Int → Bool → (Int ,Bool)

How would you go about actually executing an application of f to
two arguments? There are many factors to consider:

• How many arguments are given to the function at once? One at
a time, as currying would suggest? As many are as available at
the application site? Some other answer?
• How does the function receive its arguments? In registers? On

the stack? Bundled up on the heap somewhere?
• Since this is a lazy language, the arguments should be evaluated

lazily. How is this achieved? If f is strict in its first argument,
can we do something a bit more efficient by adjusting f and its
callers?
• How are the results returned to the caller? As a pointer to a

heap-allocated pair? Or in some other way?

The answers to these questions (and others) are collectively called
the calling convention of the function f . The calling convention of
a function is typically determined by the function’s type signature.
This suffices for a largely-first-order language like C, but it imposes
unacceptable performance penalties for a language like Haskell,
because of the pervasive use of higher-order functions, currying,
polymorphism, and laziness. Fast function calls are particularly
important in a functional programming language, so compilers for
these languages – such as the Glasgow Haskell Compiler (GHC) –
typically use a mixture of ad hoc strategies to make function calls
efficient.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we take a more systematic approach. We outline
a new intermediate language for a compiler for a purely functional
programming language, that is designed to encode the most impor-
tant aspects of a function’s calling convention directly in the type
system of a concise lambda calculus with a simple operational se-
mantics.

• We present Strict Core, a typed intermediate language whose
types are rich enough to describe all the calling conventions
that our experience with GHC has convinced us are valuable
(Section 3). For example, Strict Core supports uncurried func-
tions symmetrically, with both multiple arguments and multiple
results.
• We show how to translate a lazy functional language like

Haskell into Strict Core (Section 4). The source language,
which we call FH, contains all the features that we are inter-
ested in compiling well – laziness, parametric polymorphism,
higher-order functions and so on.
• We show that the properties captured by the intermediate lan-

guage expose a wealth of opportunities for program optimiza-
tion by discussing four of them – definition-site and use-site
arity raising (Section 6.1 and Section 6.2), thunk speculation
(Section 5.5) and deep unboxing (Section 5.6). These optimi-
sations were awkward or simply inaccessible in GHC’s earlier
Core intermediate language.

Although our initial context is that of lazy functional programming
languages, Strict Core is a call-by-value language and should also
be suitable for use in compiling a strict, pure, language such as Tim-
ber [1], or a hybrid language which makes use of both evaluation
strategies.

No single part of our design is new, and we discuss related work
in Section 7. However, the pieces fit together very nicely. For exam-
ple: the symmetry between arguments and results (Section 3.1); the
use of n-ary functions to get thunks “for free”, including so-called
“multi-thunks” (Section 3.4); and the natural expression of algo-
rithms and data structures with mixed strict/lazy behaviour (Sec-
tion 3.5).

2. The challenge we address
In GHC today, type information alone is not enough to get a defini-
tive specification of a function’s calling convention. The next few
sections discuss some examples of what we lose by working with
the imprecise, conservative calling convention implied by the type
system as it stands.

2.1 Strict arguments
Consider the following function:

f :: Bool → Int
f x = case x of True → . . . ; False → . . .

1 2009/5/14



This function is certainly strict in its argument x . GHC uses
this information to generate more efficient code for calls to f ,
using call-by-value to avoid allocating a thunk for the argument.
However, when generating the code for the definition of f , can we
really assume that the argument has already been evaluated, and
hence omit instructions that checks for evaluated-ness? Well, no.
For example, consider the call

map f [fibonacci 10, 1234]

Since map is used with both strict and lazy functions, map will not
use call-by-value when calling f . So in GHC today, f is conserva-
tive, and always tests its argument for evaluated-ness even though
in most calls the answer is ‘yes’.

An obvious alternative would be to treat first-order calls (where
the call site can “see” the definition of f , and you can statically see
that your use-site has as at least as many arguments as the definition
site demands) specially, and generate a wrapper for higher-order
calls that does the argument evaluation. That would work, but it is
fragile. For example, the wrapper approach to a map call might do
something like this:

map (λx . case x of y → f y) [ . . .]

Here, the case expression evaluates x before passing it to f ,
to satisfy f ’s invariant that its argument is always evaluated1.
But, alas, one of GHC’s optimising transformations is to rewrite
case x of y → e to e[x/y ], if e is strict in x . This transfor-
mation would break f ’s invariant, resulting in utterly wrong be-
haviour or even a segmentation fault – for example, if it lead to
erroneously treating part of an unevaluated value as a pointer. GHC
has a strongly-typed intermediate language that is supposed to be
immune to segmentation faults, so this fragility is unacceptable.
That is why GHC always makes a conservative assumption about
evaluated-ness.

The generation of spurious evaluated-ness checks represents an
obvious lost opportunity for the so-called “dictionary” arguments
that arise from desugaring the type-class constraints in Haskell.
These are constructed by the compiler so as to be non-bottoming,
and hence may always be passed by value regardless of how a
function uses them. Can we avoid generated evaluated-ness checks
for these, without the use of any ad-hocery?

2.2 Multiple arguments
Consider these two functions:

f x y = x + y

g x = let z = factorial 10 inλy → x + y + z

They have the same type (Int → Int → Int), but we evaluate
applications of them quite differently – g can only deal with being
applied to one argument, after which it returns a function closure,
whereas f can and should be applied to two arguments if possible.
GHC currently discovers this arity difference between the two
functions statically (for first-order calls) or dynamically (for higher-
order calls). However, the former requires an apparently-modest but
insidiously-pervasive propagation of ad-hoc arity information; and
the latter imposes a performance penalty [2].

For the higher-order case, consider the well-known list-combining
combinator zipWith , which we might write like this:

zipWith = λf :: (a → b → c). λxs :: List a. λys :: List b.
case xs of

Nil → Nil

1 In Haskell, a case expression with a variable pattern is lazy, but in GHC’s
current compiler intermediate language it is strict, and that is the semantics
we assume here.

Shorthand Expansion
xn , 〈x1, . . . , xn〉 (n > 0)

x , 〈x1, . . . , xn〉 (n > 0)

x , 〈x〉 Singleton
x, y , 〈x1, . . . , xn, y1, . . . , ym〉 Concatenation

Figure 1: Notation for sequences

(Cons x xs ′)→
case ys of

Nil → Nil
(Cons y ys ′)→ Cons (f x y) (zipWith f xs ′ ys ′)

The functional argument f is always applied to two arguments,
and it seems a shame that we cannot somehow communicate that
information to the functions that are actually given to zipWith
so that they might be compiled with a less pessimistic calling
convention.

2.3 Optionally-strict source languages
Leaving the issue of compilation aside, Haskell’s source-level type
system is not expressive enough to encode an important class of
invariants about how far an expression has been evaluated. For
example, you might like to write a function that produces a list
of certainly-evaluated Ints, which we might write as [ !Int ]. We do
not attempt to solve the issues of how to expose this functionality
to the user in this paper, but we make a first step along this road by
describing an intermediate language which is able to express such
types.

2.4 Multiple results
In a purely functional language like Haskell, there is no direct
analogue of a reference parameter, such as you would have in
an imperative language like C++. This means that if a function
wishes to return multiple results it has to encapsulate them in a
data structure of some kind, such as a tuple:

splitList :: [Int ]→ (Int , [Int ])
splitList xs = case xs of (y : ys)→ (y , ys)

Unfortunately, creating a tuple means that you need to allocate
a blob of memory on the heap – and this can be a real performance
drag, especially when functions returning multiple results occur in
tight loops.

How can we compile functions which – like this one – return
multiple results, efficiently?

3. Strict Core
We are now in a position to discuss the details of our proposed
compiler intermediate language, which we call Strict CoreANF

2.
Strict CoreANF makes extensive use of sequences of variables,

types, values, and terms, so we pause to establish our notation
for sequences. We use angle brackets 〈x1, x2, . . . , xn〉 to denote
a possibly-empty sequence of n elements. We often abbreviate
such a sequence as xn or, where n is unimportant, as x. When no
ambiguity arises we abbreviate the singleton sequence 〈x〉 to just
x. All this notation is summarised in Figure 1.

We also adopt the “variable convention” (that all names are
unique) throughout this paper, and assume that whenever the en-
vironment is extended, the name added must not already occur in

2 ANF stands for A-normal form, which will be explained further in Sec-
tion 3.6
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the environment – α-conversion can be used as usual to get around
this restriction where necessary.

3.1 Syntax of Strict CoreANF

Strict CoreANF is a higher-order, explicitly-typed, purely-functional,
call-by-value language. In spirit it is similar to System F, but it is
slightly more elaborate so that its types can express a richer variety
of calling conventions. The key difference from an ordinary typed
lambda calculus, is this:

A function may take multiple arguments simultaneously,
and (symmetrically) return multiple results.

The syntax of types τ , shown in Figure 2, embodies this idea:
a function type takes the form b → τ , where b is a sequence
of binders (describing the arguments of the function), and τ is a
sequence of types (describing its results). Here are three example
function types:

f1 : Int → Int
: 〈 :Int〉 → 〈Int〉

id : 〈α :?, α〉 → α
: 〈α :?, :α〉 → 〈α〉

f3 : 〈α :?, Int , α〉 → 〈α, Int〉
: 〈α :?, :Int , :α〉 → 〈α, Int〉

f4 : α :?→ Int → α→ 〈Bool , Int〉
: 〈α :?〉 → 〈〈 :Int〉 → 〈〈 :α〉 → 〈Bool , Int〉〉〉

In each case, the first line uses simple syntactic abbreviations,
which are expanded in the subsequent line. The first, f1 , takes
one argument and returns one result3. Strict CoreANF expresses
functions using the notation of dependent products. For example,
in System F the identity function id has type ∀α :?. α→ α, but in
Strict CoreANF it has the type 〈α :?, :α〉 → 〈α〉 (although another
possibility would be 〈α :?〉 → 〈〈 :α〉 → 〈α〉〉, reflecting the fact
that there is a choice of calling convention). As is conventional,
the term binder “ ” may be omitted since it cannot be mentioned.
The next example, f3 , illustrates a polymorphic function that takes
a type argument and two value arguments, and returns two results.
Finally, f4 gives a curried version of the same function.

Admittedly, this uncurried notation is more complicated than
the unary notation of conventional System F, in which all functions
are curried. The extra complexity is crucial because, as we will see
in Section 3.3, it allows us to express directly that a function takes
several arguments simultaneously, and returns multiple results.

The syntax of terms (also shown in Figure 2) is driven by the
same imperatives. For example, Strict CoreANF has n-ary applica-
tion a g; and a function may return multiple results a. A possibly-
recursive collection of heap values may be allocated with valrec,
where a heap value is just a lambda or constructor application. Fi-
nally, evaluation is performed by let; since the term on the right-
hand side may return multiple values, the let may bind multiple
values. Here, for example, is a possible definition of f3 above:

f3 = λ〈α :?, x :Int , y :α〉. 〈y , x 〉

In support of the multi-value idea, terms are segregated into
three syntactically distinct classes: atoms a, heap values v, and
multi-value terms e. An atom a is a trivial term – a literal, variable
reference, or (in an argument position) a type. A heap value v is
a heap-allocated constructor application or lambda term. Neither
atoms nor heap values require evaluation. The third class of terms
is much more interesting: a multi-value term (e) is a term that
either diverges, or evaluates to several (zero, one, or more) values
simultaneously.

3 Recall Figure 1, which abbreviates a singleton sequence 〈Int〉 to Int

Variables x, y, z

Type Variables α, β

Kinds
κ ::= ? Kind of constructed types

| κ→ κ Kind of type constructors

Binders
b ::= x :τ Value binding

| α :κ Type binding

Types
τ, υ, σ ::= T Type constructors

| α Type variable references
| b→ τ Function types
| τ υ Type application

Atoms
a ::= x Term variable references

| ` Literals

Atoms In Arguments
g ::= a Value arguments

| τ Type arguments

Multi-value Terms
e ::= a Return multiple values

| let x :τ = e in e Evaluation
| valrec x :τ = v in e Allocation
| a g Application
| case a of p → e Branch on values

Heap Allocated Values
v ::= λb. e Closures

| C τ , a Constructed data

Patterns
p ::= Default case

| ` Matches exact literal value
| C x :τ Matches data constructor

Data Types
d ::= data T α :κ = c | . . . | c Data declarations
c ::= C τ Data constructors

Programs d, e

Typing Environments
Γ ::= ε Empty environment

| Γ, x :τ Value binding
| Γ, α :κ Type binding
| Γ,C :b→ 〈T α〉 Data constructor binding
| Γ,T :κ Type constructor binding

Syntactic sugar
Shorthand Expansion

Value binders τ , :τ

Thunk types {τ1, . . . , τn} , 〈〉 → 〈τ1, . . . , τn〉
Thunk terms {e} , λ 〈〉 . e

Figure 2: Syntax of Strict CoreANF
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Γ `κ τ : κ

T :κ ∈ Γ

Γ `κ T : κ
TYCONDATA

B(T) = κ

Γ `κ T : κ
TYCONPRIM

α :κ ∈ Γ

Γ `κ α : κ
TYVAR

Γ ` b : Γ′ ∀i.Γ′ `κ τi : ?

Γ `κ b→ τ : ?
TYFUN

Γ `κ τ : κ1 → κ2 Γ `κ υ : κ1

Γ `κ τ υ : κ2
TYCONAPP

Figure 3: Kinding rules for Strict CoreANF

3.2 Static semantics of Strict CoreANF

The static semantics of Strict CoreANF is given in Figure 3, Figure 4
and Figure 5. Despite its ineluctable volume, it should present few
surprises. The term judgement Γ ` e : τ types a multi-valued term
e, giving it a multi-type τ . There are similar judgements for atoms
a, and values v, except that they possess types (not multi-types). An
important invariant of Strict CoreANF is this: variables and values
have types τ , not multi-types τ . In particular, the environment Γ
maps each variable to a type τ (not a multi-type).

The only other unusual feature is the tiresome auxiliary judge-
ment Γ `app b → τ @ g : υ, shown in Figure 5, which computes
the result type υ that results from applying a function of type b→ τ
to arguments g.

The last two pieces of notation used in the type rules are for
introducing primitives and are as follows:

L Maps literals to their built-in types
B Maps built-in type constructors to their kinds – the do-

main must contain at least all of the type constructors
returned by L

3.3 Operational semantics of Strict CoreANF

Strict CoreANF is designed to have a direct operational interpreta-
tion, which is manifested in its small-step operational semantics,
given in Figure 7. Each small step moves from one configuration
to another. A configuration is given by 〈H; e; Σ〉, where H repre-
sents the heap, e is the term under evaluation, and Σ represents the
stack – the syntax of stacks and heaps is given in Figure 6.

We denote the fact that a heap H contains a mapping from x to
a heap value v by H[x 7→ v]. This stands in contrast to a pattern
such as H,x 7→ v, where we intend that H does not include the
mapping for x

The syntax of Strict Core is carefully designed so that there is a
1–1 correspondence between syntactic forms and operational rules:

• Rule EVAL begins evaluation of a multi-valued term e1, pushing
onto the stack the frame let x :τ = • in e2. Although it is a pure
language, Strict CoreANF uses call-by-value and hence evaluates
e1 before e2. If you want to delay evaluation of e1, use a thunk
(Section 3.4).
• Dually, rule RET returns a multiple value to the let frame, bind-

ing the x to the (atomic) returned values a. In this latter rule, the
simultaneous substitution models the idea that e1 returns mul-
tiple values in registers to its caller. The static semantics (Sec-
tion 3.2) guarantees that the number of returned values exactly
matches the number of binders.
• Rule ALLOC performs heap allocation, by allocating one or

more heap values, each of which may point to the others. We
model the heap address of each value by a fresh variable y that

Γ `a a : τ

x :τ ∈ Γ
Γ `a x : τ

VAR
L(`) = τ

Γ `a ` : τ
LIT

Γ ` e : τ

∀i.Γ `a ai : τi
Γ ` a : τ

MULTI

Γ ` e1 : τ Γ, x :τ ` e2 : σ

Γ ` let x :τ = e1 in e2 : σ
LET

∀j.Γ, x :τ `v vj : τj Γ, x :τ ` e2 : σ

Γ ` valrec x :τ = v in e2 : σ
VALREC

Γ `a a : b→ τ Γ `app b→ τ @ g : υ

Γ ` a g : υ
APP

Γ `a a : τscrut ∀i.Γ `alt pi → ei : τscrut ⇒ τ

Γ ` case a of p → e : τ
CASE

Γ `v v : τ

Γ ` b : Γ′ Γ′ ` e : τ

Γ `v λb.e : b→ τ
LAM

C :b→ 〈T α〉 ∈ Γ
Γ `app b→ 〈T α〉 @ τ , a : 〈υ〉

Γ `v C τ , a : υ
DATA

Γ `alt p → e : τscrut ⇒ τ

Γ ` e : τ
Γ `alt → e : τscrut ⇒ τ

DEFALT

L(`) = τscrut Γ ` e : τ

Γ `alt ` → e : τscrut ⇒ τ
LITALT

Γ, x :τ `v C σ, x : 〈T σ〉
Γ, x :τ ` e : τ

Γ `alt C x :τ → e : T σ ⇒ τ
CONALT

Γ ` d : Γ

Γ0 = Γ,T :κ1 → . . .→ κm → ?
∀i.Γi−1 ` ci : T α :κm in Γi

Γ ` data T α :κm = c1 | . . . | cn : Γn
DATADECL

Γ ` c : T α :κ in Γ

∀i.Γ `κ τi : ?

Γ ` C τ : T α :κ in (Γ,C :α :κ, τ → 〈T α〉) DATACON

` d, e : τ

Γ0 = ε ∀i.Γi−1 ` di : Γi Γn ` e : τ

` dn, e : τ
PROGRAM

Figure 4: Typing rules for Strict CoreANF
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EVAL 〈H; let x :τ = e1 in e2; Σ〉  〈H; e1; let x :τ = • in e2. Σ〉
RET 〈H; a; let x :τ = • in e2. Σ〉  

D
H; e2[a/x]; Σ

E
ALLOC 〈H; valrec x :τ = v in e; Σ〉  

D
H, y 7→ v[y/x]; e[y/x]; Σ

E
y 6∈ dom(H)

BETA
D
H[x 7→ λb

n
. e]; x an; Σ

E
 

D
H; e[a/b

n
]; Σ

E
(n > 0)

ENTER 〈H,x 7→ λ 〈〉 . e; x 〈〉 ; Σ〉  〈H,x 7→  ; e; update x. Σ〉
UPDATE 〈H; a; update x. Σ〉  〈H[x 7→ IND a]; a; Σ〉
IND 〈H[x 7→ IND a]; x 〈〉 ; Σ〉  〈H; a; Σ〉
CASE-LIT

˙
H; case ` of . . . , ` → e, . . .; Σ

¸
 〈H; e; Σ〉

CASE-CON
D
H[x 7→ C τ , an]; case x of . . . ,C b

n → e, . . .; Σ
E
 

D
H; e[a/b

n
]; Σ

E
CASE-DEF 〈H; case a of . . . , → e, . . .; Σ〉  〈H; e; Σ〉 If no other match

Figure 7: Operational semantics of Strict CoreANF

Γ ` b : Γ

Γ ` 〈〉 : Γ
BNDRSEMPTY

Γ, α :κ ` b : Γ′

Γ ` α :κ, b : Γ′
BNDRSTY

Γ `κ τ : ? Γ, x :τ ` b : Γ′

Γ ` x :τ, b : Γ′
BNDRSVAL

Γ `app b→ τ @ g : υ

Γ `app 〈〉 → τ @ 〈〉 : τ
APPEMPTY

Γ `a a : σ Γ `app b→ τ @ g : υ

Γ `app ( :σ, b)→ τ @ a, g : υ
APPVAL

Γ `κ σ : κ Γ `app
`
b→ τ

´
[σ/α] @ g : υ

Γ `app (α :κ, b)→ τ @ σ, g : υ
APPTY

Figure 5: Typing rules dealing with multiple abstraction and appli-
cation

is not already used in the heap, and freshen both the v and e to
reflect this renaming.
• Rule BETA performs β-reduction, by simultaneously substitut-

ing for all the binders in one step. This simultaneous substitu-
tion models the idea of calling a function passing several ar-
guments in registers. The static semantics guarantees that the
number of arguments at the call site exactly matches what the
function is expecting.

Rules CASE-LIT, CASE-CON, and CASE-DEF deal with pattern
matching (see Section 3.5); while ENTER, UPDATE, and IND deal
with thunks (Section 3.4)

3.4 Thunks
Because Strict CoreANF is a call-by-value language, if we need to
delay evaluation of an expression we must explicitly thunk it in
the program text, and correspondingly force it when we want to
actually access the value.

Heap values h ::= λb. e Abstraction
| C τ , a Constructor
| IND a Indirection
|  Black hole

Heaps H ::= ε | H,x 7→ h

Stacks Σ ::= ε
| update x. Σ
| let x :τ = • in e. Σ

Figure 6: Syntax for operational semantics of Strict CoreANF

If we only cared about call-by-name, we could model a thunk
as a nullary function (a function binding 0 arguments) with type
〈〉 → Int . Then we could thunk a term e by wrapping it in a
nullary lambda λ 〈〉 . e, and force a thunk by applying it to 〈〉. This
call-by-name approach would unacceptably lose sharing, but we
can readily turn it into call-by-need by treating nullary functions
(henceforth called thunks) specially in the operational semantics
(Figure 7), which is what we do:

• In rule ENTER, an application of a thunk to 〈〉 pushes onto
the stack a thunk update frame mentioning the thunk name. It
also overwrites the thunk in the heap with a black hole ( ), to
express the fact that entering a thunk twice with no intervening
update is always an error [3]. We call all this entering, or
forcing, a thunk.
• When the machine evaluates to a result (a vector of atoms a),

UPDATE overwrites the black hole with an indirection IND a,
pops the update frame, and continues as if it had never been
there.
• Finally, the IND rule ensures that, should the original thunk be

entered to again, the value saved in the indirection is returned
directly (remember – the indirection overwrote the pointer to
the thunk definition that was in the heap), so that the body of
the thunk is evaluated at most once.

We use thunking to describe the process of wrapping a term e in
a nullary function λ 〈〉 . e. Because thunking is so common, we
use syntactic sugar for the thunking operation on both types and
expressions – if something is enclosed in {braces} then it is a
thunk. See Figure 2 for details.
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An unusual feature is that Strict CoreANF supports multi-valued
thunks, with a type such as 〈〉 → 〈Int ,Bool〉, or (using our syntac-
tic sugar) {Int ,Bool}. Multi-thunks arose naturally from treating
thunks as a special kind of function, but this additional expressive-
ness turns out to allow us to do at least one new optimisation: deep
unboxing (Section 5.6).

Arguably, we should not conflate the notions of functions and
thunks, especially since we have special cases in our operational
semantics for nullary functions. However, the similarity of thunks
and nullary functions does mean that some parts of the compiler
can be cleaner if we adopt this conflation. For example, if the
compiler detects that all of the arguments to a function of type
〈Int ,Bool〉 → Int are absent (not used in the body) then the
function can be safely transformed to one of type 〈〉 → Int ,
but not one of type Int – as that would imply that the body is
always evaluated immediately. Because we conflate thunks and
nullary functions, this restriction just falls out naturally as part of
the normal code for discarding absent arguments rather than being
a special case (as it is in GHC today).

3.5 Data types
We treat Int and Char as built-in types, with a suitable family of
(call-by-value) operations. A value of type Char is an evaluated
character, not a thunk (ie. like ML, not like Haskell), and similarly
Int . To allow a polymorphic function to manipulate values of these
built-in types, they must be boxed (ie. represented by a heap pointer
like every other value). A real implementation, however, might
have additional unboxed (not heap allocated) types, Char#, Int#,
which do not support polymorphism [4], but we ignore these issues
here.

All other data types are built by declaring a new algebraic
data type, using a delcaration d, each of which has a number of
constructors (c). For example, we represent the (lazy) list data type
with a top-level definition like so:

data List a :∗ = Nil | Cons 〈{a}, {List a}〉
Applications of data constructors cause heap allocation, and hence
(as we noted in Section 3.3), values drawn from these types can
only be allocated by a valrec expression.

The operational semantics of case expressions are given in
rules CASE-LIT, CASE-CON, and CASE-DEF, which are quite con-
ventional (Figure 7). Notice that, unlike Haskell, case does not
perform evaluation – that is done by let in EVAL. The only subtlety
(present in all such calculi) is in rule CASE-CON: the a constructor
C must be applied to both its type and value arguments, whereas
a pattern match for C binds only its value arguments. For the sake
of simplicity we restrict ourselves to vanilla Haskell 98 data types,
but there is no difficulty with extending Strict Core to include exis-
tentials, GADTs, and equality constraints [5].

3.6 A-normal form and syntactic sugar
The language as presented is in so-called A-normal form (ANF),
where intermediate results must all be bound to a name before
they can be used in any other context. This leads to a very clear
operational semantics, but there are at least two good reasons to
avoid the use of ANF in practice:

• In the implementation of a compiler, avoiding the use of ANF
allows a syntactic encoding of the fact that an expression occurs
exactly once in a program. For example, consider the following
program:

(λ〈α :∗, x :α〉. x ) 〈Int , 1〉

The compiler may manifestly see, using purely local informa-
tion, that it can perform β-reduction on this term, without the

worry that it might increase code size. The same is not true in
a compiler using ANF, because the ability to do β-reduction
without code bloat depends on your application site being the
sole user of the function – a distinctly non-local property!
• Non-ANFed terms are often much more concise, and tend to be

more understandable to the human reader.

In the remainder of the paper we will adopt a non-ANFed
variant of Strict CoreANF which we simply call Strict Core, by
making use of the following simple extension to the grammar and
type rules:

a ::= . . . | e | v
Γ ` e : 〈τ〉
Γ `a e : τ

SING
Γ `v v : τ

Γ `a v : τ
VAL

The semantics of the new form of atom are given by a stan-
dard ANFing transformation into Strict CoreANF. Note that there
are actually several different choices of ANF transformation, cor-
responding to a choice about whether to evaluate arguments or
functions first, and whether arguments are evaluated right-to-left
or vice-versa. The specific choice made is not relevant to the se-
mantics of a pure language like Strict Core.

3.7 Types are calling conventions
Consider again the example with which we began this paper. Here
are several different Strict Core types that express different calling
conventions:

f1 : Int → Bool → (Int ,Bool)
f2 : 〈Int ,Bool〉 → (Int ,Bool)
f3 : (Int ,Bool)→ 〈Int ,Bool〉
f4 : 〈{Int},Bool〉 → (Int ,Bool)

Here f1 is a curried function, taking its arguments one at a time; f2
takes two arguments at once, but returns a heap-allocated pair; f3
takes a heap-allocated pair and returns two results (presumably in
registers); while f4 takes two arguments at once, but the first is a
thunk. In this way, Strict CoreANF directly expresses the answers to
the questions posed in the Introduction.

By expressing all of these operational properties explicitly in
our intermediate language we expose them to the wrath of the
optimiser. Section 5 will show how we can use this new information
about calling convention to cleanly solve the problems considered
in the introduction.

3.8 Type erasure
Although we do not explore it further in this paper, Strict CoreANF
has a simple type-erased counterpart, where type binders in λs,
type arguments and heaps values have been dropped. A natural
consequence of this erasure is that functions such as 〈a : ∗〉 →
〈Int〉 will be converted into thunks (like 〈〉 → 〈Int〉), so their
results will be shared.

4. Translating laziness
We have defined a useful-looking target language, but we haven
not yet shown how we can produce terms it in from those of a
more traditional lazy language. In this section, we present a simple
source language that captures the essential features of Haskell, and
show how we can translate it into Strict Core.

Figure 8 presents a simple, lazy, explicitly-typed source lan-
guage, a kind of featherweight Haskell, or FH. It is designed to be
a suitable target language for the desugaring of programs written in
Haskell, and is deliberately similar to GHCs current intermediate
language (which we call Core). Due to space constraints, we omit
the type rules and dynamic semantics for this language – suffice to
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Variables x, y, z

Type Variables α, β

Kinds
κ ::= ? Kind of constructed types

| κ→ κ Kind of type constructors

Types
τ, υ, σ ::= T Type constructors

| α Type variables
| τ → τ Function types
| ∀α :κ.τ Quantification
| τ τ Type application

Expressions
e ::= ` Unlifted literals

| C Built-in data constructors
| x Variables
| e e Value application
| e τ Type application
| λx :τ. e Functions binding values
| Λα :κ. e Functions binding types
| let x :τ = e in e Recursive name binding
| case e of p → e Evaluation and branching

Patterns
p ::= Default case / ignores eval. result

| ` Matches exact literal value
| C x :τ Matches data constructor

Data Types
d ::= data T α :κ = c | . . . | c Data declarations
c ::= C τ Data constructors

Programs d, e

Figure 8: The FH language

say that they are perfectly standard for a typed lambda calculus like
System Fω [6].

4.1 Type translation
The translation from FH to Strict Core types is given by Figure 9.
The principal interesting feature of the translation is the way it deals
with function types. Function arguments are thunked, reflecting the
call-by-need semantics of application in FH, but result types are
left unthunked. This means that after being fully applied, functions
eagerly evaluate to get their result. If a use-site of that function
wants to delay the evaluation of the application it must explicitly
create a thunk.

Furthermore, both ∀ and function types translate to 1-ary func-
tions returning a 1-ary result in Strict Core.

4.2 Term translation
The translation from FH terms to those in Strict Core becomes
almost inevitable given our choice for the type translation, and is
given by Figure 10. It satisfies the invariant:

x :τ `FH e : υ =⇒ x :{[[τ ]]} ` [[e]] : 〈[[υ]]〉

The translation makes extensive use of our syntactic sugar and
ability to write non-ANFed terms, because the translation to Strict

[[τ : κ]] : κ

[[T]] = T
[[α]] = α

[[τ1 → τ2]] = {[[τ1]]} → [[τ2]]
[[∀α :κ.τ ]] = α :κ→ [[τ ]]

[[τ1 τ2]] = [[τ1]] [[τ2]]

Figure 9: Translation from FH to Strict Core types

[[e : τ ]] : 〈[[τ ]]〉

[[`]] = `
[[C]] = Cwrap

[[x]] = x 〈〉
[[e τ ]] = [[e]] [[τ ]]

[[Λα :κa. e]] = λα :κ. [[e]]
[[e1 e2]] = [[e1]] {[[e2]]}

[[λx :τ. e]] = λx :{[[τ ]]} . [[e]]

[[let x :τ = e in eb]] = valrec x :{[[τ ]]} = {[[e]]} in [[eb]]

[[case es of p → e]] = case [[es]] of [[p]] → [[e]]

[[p]]

[[`]] = `

[[C x :τ ]] = C x :{[[τ ]]}
[[ ]] =

Figure 10: Translation from FH to Strict Core expressions

CoreANF is highly verbose. For example, the translation for appli-
cations into Strict CoreANF would look like this:

[[e1 e2]] = let 〈f〉 = [[e1]] in
valrec x = λ 〈〉 . [[e2]] in
f 〈x〉

The job of the term translation is to add explicit thunks to the
Strict Core output wherever we had implicit laziness in the FH
input program. To this end, we add thunks around the result of the
translation in “lazy” positions – namely, arguments to applications
and in the right hand side of let bindings. Dually, when we need
to access a variable, it must have been the case that the binding
site for the variable caused it to be thunked, and hence we need to
explicitly force variable accesses by applying them to 〈〉.

Bearing all this in mind, here is the translation for a simple
application of a polymorphic identity function to 1:

[[(Λα :?. λx :α. x ) Int 1]] = (λα :?. λx :{α}. x 〈〉) Int {1}

4.3 Data type translation
In any translation from FH to Strict Core we must account for
(a) the translation of data type declarations themselves, (b) the
translation of constructor applications, and (c) the translation of
pattern matching. We begin with (a), using the following FH data
type declaration for lists:

data List α :∗ = Nil | Cons α (List α)

The translation D, shown in Figure 11 yields this Strict Core dec-
laration:

data List α :∗ = Nil | Cons 〈{α}, {List α}〉
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D [[d]]

D [[data T α :κ = C1 τ1 | . . . |Cn τn]]

= data T α :κ = C1 {[[τ ]]}1 | . . . |Cn {[[τ ]]}n

W [[d]]

W [[data T α :κr = C1 τ
m1
1 | . . . |Cn τ

mn
n ]]

=

8>>><>>>:
. . .
Cwrap
k = λα1 :κ1 . . . λαr :κr.

λx1 :{[[τ1,k]]} . . . λxmk :{[[τmk,k]]} .
Ck (αr, xmk )

. . . ˆ̂
d, e
˜̃

ˆ̂
d, e
˜̃

= D [[d]], valrecW [[d]] in [[e]]

Figure 11: Translation from FH to Strict Core programs

The arguments are thunked, as you would expect, but the construc-
tor is given an uncurried type of (value) arity 2. So the types of the
data constructor Cons before and after translation are:

FH Cons : ∀α.α→ List α→ List α
Strict Core Cons : 〈α : ?, {α} , {List α}〉 → 〈List α〉

We give Strict Core data constructors an uncurried type to reflect
their status as expressing the built-in notions of allocation and
pattern matching (Figure 7). However, since the type of Strict-Core
Cons is not simply the translation of the type of the FH Cons , we
define a top-level wrapper function Conswrap which does have the
right type:

Conswrap = λα :∗. λx :{α}. λxs :{List α}. Cons 〈α, x , xs〉
Now, as Figure 10 shows, we translate a call of a data constructor
C to a call of Cwrap. (As an optimisation, we refrain from thunking
the definition of the wrapper and forcing its uses, which accounts
for the different treatment of C and x in Figure 10.) We expect that
the wrappers will be inlined into the program by an optimisation
pass, exposing the more efficient calling convention at the original
data constructor use site.

The final part of the story is the translation of pattern match-
ing. This is also given in Figure 10 and is fairly straightforward
once you remember that the types of the bound variables must be
thunked to reflect the change to the type of the data constructor
functions.

Finally, the translation for programs, also given in Figure 11,
ties everything together by using both the data types and expression
translations.

4.4 The seq function
A nice feature of Strict CoreANF is that it is possible to give a
straightforward definition of the primitive seq function of Haskell:

seq : {α :∗ → β :∗ → {α} → {β} → β}
= {λα :∗. λβ :∗. λx :{α}. λy :{β}. let : α = x 〈〉 in y 〈〉}

5. Putting Strict Core to work
In this section we concentrate on how the features of Strict Core can
be of aid to an optimising compiler that uses it as an intermediate
language. These optimisations all exploit the additional operational
information available from the types-as-calling-conventions corre-
spondence in order to improve the efficiency of generated code.

5.1 Routine optimisations
Strict Core has a number of equational laws that have applications
to program optimisation. We present a few of them in Figure 12.

The examples we present in this section will usually already
have had these equational laws applied to them, if the rewrite
represents an improvement in their efficiency or readability. For
an example of how they can improve programs, notice that in the
translation we give from FH, variable access in a lazy context (such
as the argument of an application) results in a redundant thunking
and forcing operation. We can remove that by applying the η law:

[[f y ]] = [[f ]] 〈λ 〈〉 . [[y ]]〉
= f 〈〉 〈λ 〈〉 . y 〈〉〉
= f 〈〉 〈y〉

5.2 Expressing the calling convention for strict arguments
Let’s go back to the first example of a strict function from Section 1:

f :: Bool → Int
f x = case x of True → . . . ; False → . . .

We claimed that we could not, while generating the code for f ,
assume that the x argument was already evaluated, because that is a
fragile property that would be tricky to guarantee for all call-sites.
In Strict Core, the evaluated/non-evaluated distinction is apparent
in the type system, so the property becomes robust. Specficically,
we can use the standard worker/wrapper transformation [7, 8] to f
as follows:

fwork :Bool → Int
fwork = λx :Bool . case x of True 〈〉 → . . . ; False 〈〉 → . . .

f :{Bool} → Int
f = λx :{Bool}. fwork 〈x 〈〉〉

Here the worker fwork takes a definitely-evaluated argument of type
Bool , while the wrapper f takes a lazy argument and forces it
before calling f . By inlining the f wrapper selectively, we will often
be able to avoid the forcing operation altogether, by cancelling it
with explicit thunk creation. Because every lifted (i.e. lazy) type
in Strict Core has an unlifted (i.e. strict) equivalent, we are able
to express all of the strictness information resulting from strictness
analysis by a program transformation in this style. This is unlike
the situation in GHC today, where we can only do this for product
types; in particular, strict arguments with sum types such as Bool
have their strictness information applied in a much more ad-hoc
manner.

We suggested in Section 2 that this notion could be used to
improve the desugaring of dictionary arguments. At this point,
the approach should be clear: during desugaring of Haskell into
Strict Core, dictionary arguments should not be wrapped in explicit
thunks, ever. This entirely avoids the overhead of evaluatedness
checking for such arguments.

5.3 Exploiting the multiple-result calling convention
Our function types have first-class support for multiple arguments
and results, so we can express the optimisation enabled by a con-
structed product result (CPR) analysis [9] directly. For example,
translating splitList from Section 2.4 into Strict Core yields the
following program:

splitList = {λxs :{List Int}. case xs 〈〉 of
Cons 〈y :{Int}, ys :{List Int}〉 → (, ) 〈Int ,List Int , y , ys〉}

Here we assume that we have translated the FH pair type in the
standard way to the following Strict Core definition:

data (, ) α :∗ β :∗ = (, ) 〈{α}, {β}〉
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β valrec x :τ = λb
n
. e in x an = e[a/b

n
]

η valrec x :τ = λb
n
. y b

n in e = let 〈x :τ〉 = 〈y〉 in e
let let x :τ = a in e = e[a/x]
let-float let x :τ1 = (let y :σ2 = e1 in e2) in e3 = let y :σ2 = e1 in let x :τ1 = e2 in e3
valrec-float let x :τ = (valrec y :σ = e in e2) in e3 = valrec y :σ = e in let x :τ = e2 in e3
valrec-join valrec x :τ = e in valrec y :σ = e in e = valrec x :τ = e, y :σ = e in e
case-constructor-elim valrec x :τ = C τ , an in case x of . . . C b

n → e . . . = valrec x :τ = C τ , an in e[a/b
n
]

case-literal-elim case ` of . . . ` → e . . . = e

Figure 12: Sample equational laws for Strict CoreANF

After a worker/wrapper transformation informed by CPR analysis
we obtain a version of the function that uses multiple results, like
so:

splitListwork = λxs :{List Int}. case xs 〈〉 of
Cons 〈y :{Int}, ys :{List Int}〉 → 〈y , ys〉

splitList = {λxs :{List Int}.
let 〈y :{Int}, ys :{List Int}〉 = splitListwork xs
in (, ) 〈Int ,List Int , y , ys〉}

Once again, inlining the wrapper splitList at its call sites can often
avoid the heap allocation of the pair ((, )).

Notice that the worker is a multi-valued function that returns
two results. GHC as it stands today has a notion of an “unboxed
tuple” type supports multiple return values, but this extension has
never fitted neatly into the type system of the intermediate lan-
guage. Strict Core gives a much more principled treatment of the
same concept.

5.4 Redundant evaluation
Consider this program:

data Colour = R | G | B
f x = case x of

R → . . .
→ . . . (case x of G → . . . ; B → . . .) . . .

In the innermost case expression, we can be certain that x has al-
ready been evaluated – and we might like to use this information
to generate better code for that inner case split, by omitting evalu-
atedness checks. However, notice that it translates into Strict Core
like so:

f = {λx . case x 〈〉 of
R 〈〉 → . . .
→ . . . (case x 〈〉 of G 〈〉 → . . .

B 〈〉 → . . .) . . .}
It is clear that to avoid redundant evaluation of x we can simply
apply common-subexpression elimination (CSE) to the program:

f = {λx . let x ′ = x 〈〉 in
case x ′ of R 〈〉 → . . .

→ . . . (case x ′ of G 〈〉 → . . .
B 〈〉 → . . .) . . .}

This stands in contrast to GHC today, where an ad-hoc mechanism
tries to discover opportunities for exactly this optimisation.

5.5 Thunk elimination
There are some situations where delaying evaluation by inserting
a thunk just does not seem worth the effort. For example, consider
this FH source program:

let xs :List Int = Cons Int y ys

The translation of this program into Strict Core will introduce a
wholly unnecessary thunk around xs , thus

valrec xs :{List Int} = {Cons 〈Int , y , ys〉}
It is obviously stupid to build a thunk for something that is already
a value, so we would prefer to see

valrec xs :List Int = Cons 〈Int , y , ys〉
but now references to xs in the body of the valrec will be badly-
typed! As usual, we can solve the impedence mis-match by adding
an auxiliary definition:

valrec xs ′ :List Int = Cons 〈Int , y , ys〉 in
valrec xs :{List Int} = {xs ′}

Indeed, if you think of what this transformation would look like
in Strict CoreANF, it amounts to floating a valrec (for xs ′) out of
a thunk, a transformation that is widely useful [10]. Now, several
optimisations suggest themselves:

• We can inline xs freely at sites where it is forced, thus (xs 〈〉),
which then simplifies to just xs ′.
• Operationally, the thunk λ 〈〉 . xs′ behaves just like IND xs ′,

except that the former requires an update (Figure 7). So it would
be natural for the code generator to allocate an IND directly for
a nullary lambda that returns immediately.
• GHC’s existing runtime representation goes even further: since

every heap object needs a header word to guide the garbage
collector, it costs nothing to allow an evaluated Int to be enter-
able. In effect, a heap object of type Int can also be used to
represent a value of type {Int}, an idea we call auto-lifting.
That in turn means that the binding for xs generates literally no
code at all – we simpy use xs ′ where xs is mentioned.

One complication is that thunks cannot be auto-lifted. Consider this
program:

valrec f :{Int} = {⊥} in
valrec g :{{Int}} = {f } in
g 〈〉

Clearly, the program should terminate. However if we adopt-auto
lifting for thunks then at runtime g and f will alias and hence we
will cause the evaluation of ⊥! So we must restrict auto-lifting to
thunks of non-polymorphic, non-thunk types. (Another alternative
would be to restrict the kind system so that thunks of thunks and
instantiation of type variables with thunk types is disallowed, which
might be an acceptable tradeoff.)

5.6 Deep unboxing
Another interesting possibility for optimisation in Strict Core is
the exploitation of “deep” strictness information by using n-ary
thunks to remove some heap allocated values (a process known as
unboxing). What we mean by this is best understood by example:
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valrec f :{({Int}, {Int})} → Int
= λ〈pt : {({Int}, {Int})}〉.

valrec c :Bool = . . . in
case c of True 〈〉 → 1

False 〈〉 → case pt 〈〉 of (x , y)→
(+) 〈x 〈〉, y 〈〉〉

Typical strictness analyses will not be able to say definitively
that f is strict in pt (even if c is manifestly False!). However,
some strictness analysers might be able to tell us that if pt is
ever evaluated then both of its components certainly are. Taking
advantage of this information in a language without explicit thunks
would be fiddly at best, but in our intermediate language we can
use the worker/wrapper transformation to potentially remove some
thunks by adjusting the definition of f like so:

valrec fwork :{Int , Int} → Int =
λpt ′ :{Int , Int}.

valrec c :Bool = . . . in
case c of True 〈〉 → 1

False 〈〉 → let 〈x ′ :Int , y ′ :Int〉 = pt ′ 〈〉
in (+) 〈x ′, y ′〉,

f :{({Int}, {Int})} → Int =
λ(pt : {({Int}, {Int})})→

valrec pt ′ :{Int , Int} =
{ case pt 〈〉 of (x , y)→ 〈x 〈〉, y 〈〉〉}

in fwork pt ′

Once again, inlining the new wrapper function at the use sites
has the potential to cancel with pair and thunk allocation by the
callers, avoiding heap allocation and indirection.

Note that the ability to express this translation actually de-
pended on the ability of our new intermediate language to express
multi-thunks (Section 3.4) – i.e. thunks that when forced, evaluate
to multiple results, without necessarily allocating anything on the
heap.

6. Arity raising
Finally, we move on to two optimisations that are designed to
improve function arity – one that improves arity at a function by
examining how the function is defined, and one that realises an
improvement by considering how it is used. These optimisations
are critical to ameliorating the argument-at-a-time worst case for
applications that occurs in the output of the naive translation from
FH. GHC does some of these arity-related optimisations in an
ad-hoc way already; the contribution here is to make them more
systematic and robust.

6.1 Definition-site arity raising
Consider the following Strict Core binding:

valrec f :Int → Int → Int = λx :Int . λy :Int . e in f 1 2

This code is a perfect target for one of the optimisations that Strict
Core lets us express cleanly: definition-site arity raising. Observe
that currently callers of f are forced to apply it to its arguments one
at a time. Why couldn’t we change the function so that it takes both
of its arguments at the same time?

We can realise the arity improvement for f by using, once again,
a worker/wrapper transformation. The wrapper, which we give this
the original function name, f , simply does the arity adaptation
before calling into a worker. The worker, which we call fwork, is
then responsible for the rest of the calculation of the function4:

4 Since e may mention f , the two definitions may be mutually recursive.

valrec fwork :〈Int , Int〉 → Int = λ〈x :Int , y :Int〉. e
f :Int → Int → Int = λx :Int . λy :Int . fwork 〈x , y〉

in f 1 2

At this point, no improvement has yet occurred – indeed, we will
have made the program worse by adding a layer of indirection via
the wrapper! However, once the wrapper is vigourously inlined at
the call sites by the compiler, it will often be the case that the
wrapper will cancel with work done at the call site, leading to a
considerable efficiency improvement:

valrec fwork :〈Int , Int〉 → Int = λ〈x :Int , y :Int〉. e
in fwork 〈1, 2〉
This is doubly true in the case of recursive functions, because by

performing the worker/wrapper split and then inlining the wrapper
into the recursive call position, we remove the need to heap-allocate
a number of intermediate function closures representing partial
applications in a loop.

Although this transformation can be a big win, we have to be a
bit careful about where we apply it. The ability to apply arguments
one at a time to a curried function really makes a difference to
efficiency sometimes, because call-by-need (as opposed to call-
by-name) semantics allows work to be shared between several
invocations of the same partial application. To see how this works,
consider this Strict Core program fragment:

valrec g :Int → Int → Int
= (λx :Int . let s = fibonacci x inλy :Int . . . .) in

let h :Int → Int = g 5
in h 10 + h 20

Because we share the partial application of g (by naming it h),
we will only compute the application fibonacci 5 once. However,
if we were to “improve” the arity of g by turning it into a function
of type 〈Int , Int〉 → Int , then it would simply be impossible to
express the desired sharing! Loss of sharing can easily outweigh
the benefits of a more efficient calling convention.

Identifying some common cases where no significant sharing
would be lost by increasing the arity is not hard, however. In
particular, unlike g , it is safe to increase the arity of f to 2, because
f does no work (except allocate function closures) when applied to
fewer than 2 arguments. Another interesting case where we might
consider raising the arity is where the potentially-shared work done
by a partial application is, in some sense, cheap – for example, if
the sharable expressions between the λs just consist of a bounded
number of primitive operations. We do not attempt to present a
suitable arity analysis in this paper; our point is only that Strict
Core gives a sufficiently expressive medium to express its results.

6.2 Use-site arity raising
This is, however, not the end of the story as far as arity raising
is concerned. If we can see all the call-sites for a function, and
none of the call sites share partial applications of less than than
n arguments, then it is perfectly safe to increase the arity of that
function to n, regardless of whether or not the function does work
that is worth sharing if you apply fewer than n arguments. For
example, consider function g from the previous sub-section, and
suppose the the body of its valrec was . . . (g p q) . . . (g r s) . . .;
that is, every call to g has two arguments. Then no sharing is
lost by performing arity raising on its definition, but considerable
efficiency is gained.

This transformation not only applies to valrec bound functions,
but also to uses of higher-order functional arguments. After trans-
lation of the zipWith function from Section 2.2 into Strict Core,
followed by discovery of its strictness and definition-site arity prop-
erties, the worker portion of the function that remains might look
like the following:
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valrec zipWith :〈a :∗, b :∗, c :∗, {{a} → {b} → c},
List a,List b〉 → List c

= λ〈a :∗, b :∗, c :∗, f :{{a} → {b} → c},
xs :List a, ys :List b〉.

case xs of Nil 〈〉 → Nil c
Cons 〈x :{a}, xs ′ :{List a}〉 →

case ys of Nil 〈〉 → Nil c
Cons 〈y :{b}, ys ′ :{List b}〉 →

Cons 〈c, f 〈〉 x y , zipWith 〈a, b, c, f , xs ′ 〈〉, ys ′ 〈〉〉〉.

Notice that f is only ever applied in the body to three arguments at
a time – 〈〉, x , and y (or rather 〈x 〉 and 〈y〉). Based on this observa-
tion, we could re-factor zipWith so that it applied its function argu-
ment to all these arguments (namely 〈x , y〉) at once. The resulting
wrapper would look like this (omitting a few types for clarity):

valrec zipWith :〈a :∗, b :∗, c :∗, {{a} → {b} → c},
List a,List b〉 → List c

= λ〈a :∗, b :∗, c :∗, f , xs, ys〉.
valrec f ′ :〈{a}, {b}〉 → c = λ〈x , y〉. f 〈〉 x y
in zipWithwork 〈a, b, c, f ′, xs, ys〉

To see how this can lead to code improvement, consider a call
zipWith 〈Int , Int , Int , g , xs, ys〉, where g is the function from
Section 6.1. Then, after inlining the wrapper of zipWith we can
see locally that g is applied to all its arguments can can therefore be
arity-raised. Now, the wrapper of g will cancel with definition of f ′,
leaving the call we really want: zipWithwork 〈Int , Int , Int , gwork, xs, ys〉.

6.3 Reflections on arity-raising
Although the use-site analysis might, at first blush, seem to be
more powerful than the definition-site one, it is actually the case
that the two arity raising transformations are each able to improve
the arities of some functions where the other cannot. In particular,
for a compiler that works module-by-module like GHC, the use-
site analysis will never be able to improve the arity of a top-level
function as some of the call sites are unknown statically.

The key benefits of the new intermediate language with regard
to the arity raising transformation are as follows:

• Arity in the intermediate language is more stable. It is almost
impossible for a compiler transformation to accidentally reduce
the arity of a function without causing a type error, whereas
accidental reduction of arity is a possibility we must actively
concern ourselves with avoiding in the GHC of today.
• Expressing arity in the type system allows optimisations to be

applied to the arity of higher-order arguments, as we saw in
Section 6.2.
• By expressing arity statically in the type information, it is possi-

ble that we could replace GHC’s current dynamic arity discov-
ery [2] with purely static arity dispatch. This requires that arity
raising transformations like these two can remove enough of the
argument-at-a-time worst cases such that we obtain satisfactory
performance with no run-time tests at all.
• If purely static arity discovery turns out to be too pessimistic

in practice (a particular danger for higher order arguments), it
would still be straightforward to adapt the dynamic discovery
process for this new core language, but we can avoid using it
except in those cases where it could give a better result than
static dispatch. Essentially, if we appear to be applying at least
two groups of arguments to a function, then at that point we
should generate code to dynamically check for a better arity
before applying the first group.

7. Related work
Benton et al’s Monadic Intermediate Language (MIL) [11] is simi-
lar to our proposed intermediate language. The MIL included both
n-ary lambdas and multiple returns from a function, but lacked a
treatment of thunks due to aiming to compile a strict language. MIL
also included a sophisticated type system that annotated the return
type of functions with potential computational effects, including di-
vergence. This information could be used to ensure the soundness
of arity-changing transformations – i.e. uncurrying is only sound if
a partial application has no computational effects.

Both MIL and the Bigloo Scheme compiler [12] (which could
express n-ary lambdas), included versions of what we have called
arity definition-site analysis. However, the MIL paper does not
seem to consider the work-duplication issues involved in the arity
raising transformation, and the Bigloo analysis was fairly simple
minded – it only coalesced manifestly adjacent lambdas, without
allowing (for example) potentially shareable work to be duplicated
as long as it was cheap. We think that both of these issues deserve a
more thorough investigation. A simple arity definition-site analysis
is used by SML/NJ [13], though the introduction of n-ary argu-
ments is done by a separate argument flattening pass later on in the
compiler rather than being made immediately manifest.

In MIL, function application used purely static arity informa-
tion. Bigloo used a hybrid static/dynamic arity dispatch scheme,
but unfortunately do not appear to report on the cost (or otherwise)
of operating purely using static arity information.

The intermediate language discussed here is in some ways an
extension an extension of theL2 language [14] which also explored
the possibility of an optimising compiler suitable for both strict
and lazy languages. We share with L2 an explicit representation
of thunking and forcing operations, but take this further by addi-
tionally representing the operational notions of unboxing (through
multiple function results) and arity. The L2 language shares with
the MIL the fact that it makes an attempt to support impure strict
languages, which we do not – though impure operations could po-
tentially be desugared into our intermediate language using a state-
token or continuation passing style to serialize execution.

GRIN [15] is another language that used an explicit represen-
tation of thunks and boxing properties. Furthermore, GRIN uses a
first order program representation where the structure of closures is
explicit – in particular, this means that unboxing of closures is ex-
pressible. Note that the “arity raising” and “generalized unboxing”
transformations described by Boquist are not the same thing as the
arity analyses and “deep unboxing” transformation we describe.

The IL language [16] represents thunks explicitly by way of
continuations with a logical interpretation, and is to our knowledge
the first time that auto-lifting is discussed in the literature. It seems
likely that some way could be found to adapt the logic based
approach of this paper to accommodate a treatment of arity and
multiple-value expressions, as long as some way is adopted to
distinguish between “boxed” and “unboxed” uses of the ∧ tuple
type formation rule.

Hannan and Hicks have previously introduced the arity use-site
optimization under the name “higher-order uncurrying” [17] as a
type-directed analysis on a source language. They also separately
introduced an optimisation called “higher-order arity raising” [18]
which attempts to unpack tuple arguments where possible – this
is a generalisation of the existing worker/wrapper transformations
GHC currently does for strict product parameters. However, their
analyses only consider a strict language, and in the case of uncur-
rying does not try to distinguish between cheap and expensive com-
putation in the manner we propose above. Leroy et al. [19] demon-
strated a verified version of the framework which operates by coer-
cion insertion, which is similar to our worker/wrapper approach.
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8. Conclusions and further work
In this paper we have described what we believe to be a interest-
ing point in the design space of compiler intermediate languages.
By making information about a function’s calling convention to-
tally explicit in the intermediate language type system, we expose
it to the optimiser – in particular we allow optimisation of decisions
about function arity. A novel concept – n-ary thunks – arose nat-
urally from the process of making calling convention explicit, and
this in turn allows at least one novel and previously-inexpressible
optimisation (deep unboxing) to be expressed.

This lazy λ-calculus FH we present is similar to System FC,
GHC’s current intermediate language. For a long time, a lazy lan-
guage was, to us at least, the obvious intermediate language for a
lazy source language such as Haskell – so it was rather surprising
to discover that an appropriately-chosen strict calculus seems to be
in many ways better suited to the task!

However, it still remains to implement the language in GHC
and gain practical experience with it. In particular, we would like
to obtain some quantitative evidence as to whether purely static
arity dispatch leads to improved runtimes compared to a dynamic
consideration of the arity of a function such as GHC implements
at the moment. A related issue is pinning down the exact details
of how a hybrid dynamic/static dispatch scheme would work, and
how to implement it without causing code bloat from the extra
checks. We anticipate that we can reuse existing technology from
our experience with the STG machine [20] to do this.

Although we have presented, by way of examples, a number of
compiler optimisations that are enabled or put on a firmer footing
by the use of the new intermediate language, we have not provided
any details about how a compiler would algorithmically decide
when and how to apply them. In particular, we plan to write a
paper fully elucidating the details of the two arity optimisations
(Section 6.2 and Section 6.1) in a lazy language and reporting on
our practical experience of their effectiveness.

There are a number of interesting extensions to the intermediate
language that would allow us to express even more optimisations.
We are particularly interested in the possibility of using some
features of the ΠΣ language [21] to allow us to express even more
optimisations in a typed manner. In particular, adding unboxed Σ
types would address an asymmetry between function argument and
result types in Strict Core – binders may not appear to the right
of a function arrow currently. They would also allow us to express
unboxed existential data types (including function closures, should
we wish) and GADTs. Another ΠΣ feature – types that can depend
on “tags” – would allow us to express unboxed sum types, but the
implications of this feature for the garbage collector are not clear.

We would like to expose the ability to use “strict” types to the
compiler user, so Haskell programs can, for example, manipulate
lists of strict integers ([ !Int ]). Although it is easy to express such
things in the Strict Core language, it is not obvious how to go about
exposing this ability in the source language in a systematic way –
work on this is ongoing.
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