Skip to main content

Advertisement

Log in

Improved Prediction of Blood–Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints

  • Research Article
  • Theme: Better Drugs for Better Life: Drug Discovery and Development Colloquium 2017
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Blood–brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. George A. The design and molecular modeling of CNS drugs. Curr Opin Drug Discov Dev. 1999;2(4):286–92.

    CAS  Google Scholar 

  2. Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies: methods and applications. Berlin: Springer Science & Business Media; 2010.

    Book  Google Scholar 

  3. Bicker J, Alves G, Fortuna A, Falcão A. Blood–brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm. 2014;87(3):409–32.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham MH. The factors that influence permeation across the blood–brain barrier. Eur J Med Chem. 2004;39(3):235–40.

    Article  PubMed  CAS  Google Scholar 

  5. Rose K, Hall LH, Kier LB. Modeling blood-brain barrier partitioning using the electrotopological state. J Chem Inf Comput Sci. 2002;42(3):651–66.

    Article  PubMed  CAS  Google Scholar 

  6. Crivori P, Cruciani G, Carrupt P-A, Testa B. Predicting blood−brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43(11):2204–16.

    Article  PubMed  CAS  Google Scholar 

  7. Ooms F, Weber P, Carrupt P-A, Testa B. A simple model to predict blood–brain barrier permeation from 3D molecular fields. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2002;1587(2):118–25.

    Article  CAS  Google Scholar 

  8. Gerebtzoff G, Seelig A. In silico prediction of blood−brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J Chem Inf Model. 2006;46(6):2638–50.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao YH, Abraham MH, Ibrahim A, Fish PV, Cole S, Lewis ML, et al. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes. J Chem Inf Model. 2007;47(1):170–5.

    Article  PubMed  CAS  Google Scholar 

  10. Lanevskij K, Japertas P, Didziapetris R. Improving the prediction of drug disposition in the brain. Expert Opin Drug Metab Toxicol. 2013;9(4):473–86.

    Article  PubMed  CAS  Google Scholar 

  11. Mehdipour AR, Hamidi M. Brain drug targeting: a computational approach for overcoming blood–brain barrier. Drug Discov Today. 2009;14(21):1030–6.

    Article  PubMed  CAS  Google Scholar 

  12. Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv. 2013;10(7):927–55.

    Article  PubMed  CAS  Google Scholar 

  13. Di L, Kerns EH, Carter GT. Strategies to assess blood–brain barrier penetration. Expert Opin Drug Discovery. 2008;3(6):677–87.

    Article  CAS  Google Scholar 

  14. Vilar S, Chakrabarti M, Costanzi S. Prediction of passive blood–brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors. J Mol Graph Model. 2010;28(8):899–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zah J, Terre'Blanche G, Erasmus E, Malan SF. Physicochemical prediction of a brain–blood distribution profile in polycyclic amines. Bioorg Med Chem. 2003;11(17):3569–78.

    Article  PubMed  CAS  Google Scholar 

  16. Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem. 1988;31(3):656–71.

    Article  PubMed  CAS  Google Scholar 

  17. Dagenais C, Avdeef A, Tsinman O, Dudley A, Beliveau R. P-glycoprotein deficient mouse in situ blood–brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharm Sci. 2009;38(2):121–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lanevskij K, Japertas P, Didziapetris R, Petrauskas A. Ionization-specific prediction of blood–brain permeability. J Pharm Sci. 2009;98(1):122–34.

    Article  PubMed  CAS  Google Scholar 

  19. Lanevskij K, Dapkunas J, Juska L, Japertas P, Didziapetris R. QSAR analysis of blood–brain distribution: the influence of plasma and brain tissue binding. J Pharm Sci. 2011;100(6):2147–60.

    Article  PubMed  CAS  Google Scholar 

  20. Luco JM. Prediction of the brain− blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci. 1999;39(2):396–404.

    Article  PubMed  CAS  Google Scholar 

  21. Adenot M, Lahana R. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci. 2004;44(1):239–48.

    Article  PubMed  CAS  Google Scholar 

  22. Mente S, Lombardo F. A recursive-partitioning model for blood–brain barrier permeation. J Comput Aided Mol Des. 2005;19(7):465–81.

    Article  PubMed  CAS  Google Scholar 

  23. Shen J, Du Y, Zhao Y, Liu G, Tang Y. In silico prediction of blood–brain partitioning using a chemometric method called genetic algorithm based variable selection. Mol Informatics. 2008;27(6):704–17.

    CAS  Google Scholar 

  24. Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ. Effect of selection of molecular descriptors on the prediction of blood−brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model. 2005;45(5):1376–84.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Zhu H, Oprea TI, Golbraikh A, Tropsha A. QSAR modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm Res. 2008;25(8):1902–14.

    Article  PubMed  CAS  Google Scholar 

  26. Jung E, Kim J, Kim M, Jung DH, Rhee H, Shin J-M, et al. Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics. 2007;8(1):245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Garg P, Verma J. In silico prediction of blood brain barrier permeability: an artificial neural network model. J Chem Inf Model. 2006;46(1):289–97.

    Article  PubMed  CAS  Google Scholar 

  28. Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007;47(6):2408–15.

    Article  PubMed  CAS  Google Scholar 

  29. Fröhlich H, Wegner J, Sieker F, Zell A. Kernel functions for attributed molecular graphs—a new similarity-based approach to ADME prediction in classification and regression. Mol Informatics. 2006;25(4):317–26.

    Google Scholar 

  30. Shen J, Cheng F, Xu Y, Li W, Tang Y. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model. 2010;50(6):1034–41.

    Article  PubMed  CAS  Google Scholar 

  31. Golmohammadi H, Dashtbozorgi Z, Acree WE. Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci. 2012;47(2):421–9.

    Article  PubMed  CAS  Google Scholar 

  32. Vapnik V. The nature of statistical learning theory. Berlin: Springer science & business media; 2013.

    Google Scholar 

  33. Trotter MWB. Support vector machines for drug discovery. London: University of London; 2007.

    Google Scholar 

  34. Geppert H, Vogt M, Bajorath J. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model. 2010;50(2):205–16.

    Article  PubMed  CAS  Google Scholar 

  35. Collobert R, Bengio S. SVMTorch: Support vector machines for large-scale regression problems. J Mach Learn Res. 2001;1(Feb):143–60.

    Google Scholar 

  36. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199–222.

    Article  Google Scholar 

  37. Gunn SR. Support vector machines for classification and regression. ISIS Tech Rep. 1998;14:85–6.

    Google Scholar 

  38. Chung K-M, Kao W-C, Sun C-L, Wang L-L, Lin C-J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 2003;15(11):2643–81.

    Article  PubMed  Google Scholar 

  39. Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector classification. 2003.

  40. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7):1466–74.

    Article  PubMed  CAS  Google Scholar 

  41. Toolkits O. OpenEye Scientific Software, Santa Fe, NM. 2015.

  42. Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969;11(1):137–48.

    Article  Google Scholar 

  43. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.

    Article  Google Scholar 

  44. Zheng F, Bayram E, Sumithran SP, Ayers JT, Zhan C-G, Schmitt JD, et al. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorg Med Chem. 2006;14:3017–37.

    Article  PubMed  CAS  Google Scholar 

  45. Zheng F, McConnell MJ, Zhan C-G, Dwoskin LP, Crooks PA. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(−)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum. Bioorg Med Chem. 2009;17:4477–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zheng F, Zheng G, Deaciuc AG, Zhan C-G, Dwoskin LP, Crooks PA. Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2. Bioorg Med Chem. 2007;15:2975–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zheng F, Zheng G, Deaciuc AG, Zhan C-G, Dwoskin LP, Crooks PA. Computational neural network analysis of the affinity of N-n-alkylnicotinium salts for the alpha4beta2* nicotinic acetylcholine receptor. J Enzyme Inhib Med Chem. 2007;24:157–68.

    Article  CAS  Google Scholar 

  48. Ring JR, Zheng F, Haubner AJ, Littleton JM, Crooks PA. Improving the inhibitory activity of arylidenaminoguanidine compounds at the N-methyl-D-aspartate receptor complex from a recursive computational-experimental structure-activity relationship study. Bioorg Med Chem. 2013;21:1764–74.

    Article  PubMed  CAS  Google Scholar 

  49. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16(5):412–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Computer Center at the University of Kentucky for supercomputing time on a Dell Supercomputer Cluster consisting of 388 nodes or 4816 processors.

Funding

This work was supported in part by the National Science Foundation (NSF grant CHE-1111761) and the National Institutes of Health (NIH grants UH2/UH3 DA041115, R01 DA035552, R01 DA032910, R01 DA013930, R01 DA025100, and UL1TR001998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Guo Zhan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Shraddha Thakkar and Cesar M. Compadre

Electronic Supplementary Material

Additional data (Tables S1 and S2) for the accuracy comparison associated with the RS method.

ESM 1

(PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zheng, F. & Zhan, CG. Improved Prediction of Blood–Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints. AAPS J 20, 54 (2018). https://doi.org/10.1208/s12248-018-0215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0215-8

KEY WORDS

Navigation