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Abstract. Pulsatile hormone secretion. is o h s e n d  in almost eve? hormonal system. 'l'lic 
tiequency of episodic hormone release rangs  fro111 approximately I t1  to .I 00 pulses in 24 hours. 
This temporal mode of secretion is an important Seature of intcrccllular information transfer in 
addition to a dose-response dependent regulation. It has been demonstrated in a number of' 
experiments that changes in Uie temporal pattern of pulsaiile hormone secretion specifically 
regulate cellular and organ function and structure. Recent evidence links osteoporosis, a disease 
characterized by loss of bone mass and structure, to changes in the dynamics of pulsatile 
parathyroid hormone (PTH) secretion. In our study me applied nonlinear and linear time series 
prediction to characterize the secretoly dynamics of PTI-I in both healthy human subjects and 
patients with osteoporosis. Osteoporotic patients appear to lack periods of high predictahility 
found in normal humans. .In contrast to patients with osteoporosis patients with 
hyperparathyroidism. a condition \vhich despite sometimes reduced hone mass has a presefled 
bone architecture, show pel ids  of high predictability of I'TI1 secretion. Using stochastic 
surrogate data sets which match certain'statistical properties of the original j inx series 
siprificant nonlinear determinism could he found for the PTIl time senes of a group of healthy - - .  
subjects. Using clasical nonlinear analytical techniques we could demonstrate Ihat the irregular 
vattern of~ulsatile PTH secretion in hcalthv men exhibits characteristics of deterministic chaos. 
Pulsatile secretion of PTI-I in healthy subjects seems to be a first exaniple of nonlinear 
determinism in an apparently irregular hormonal rh>.thm in human physiolo~. 
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INTRODUCTION 

Horn~onal systems are regulated dynamically (1). There has been growing 
evidence in recent years that oscillations of the plasma concentration of 
parathyroid hormone (PTH) on shor-t time scales play an important role in the 
physiological bone remodeling process which ensures a balance of bone resorption 
and bone formation (2-4). PTH in healthy humans is secreted in an episodic 
manner in distinct pulses with a frequency ranging from 1 pulselhour for large 
pulses and 1 pulse110 minutes for smaller pulses (2) In animal experiments 
intermittent administration of PTH increases bone mass and may enhance normal 
bone connectivity, whereas continuous infusion of the same dose leads to a 
dramatic loss of bone mass and structure (5-7) As these changes occur in 
osteoporotic patients, it is conceivable that this disease may also be caused by a 
disruption of the normal temporal dynamics of episodic PTH secretion. On the 
other hand patients with hyperparathyroidism have a well preserved trabecular 

.bone structure (8) These results suggest that the temporal pattern of PTH 
secretion in osteoporotic patients, patients with hyperparathyroidism, and healthy 
controls would be different. And in fact these differences were found in recent 
studies in healthy subjects, patients with osteoporosis, and hyperparathyroidism by 
drawing blood every two minutes over several hours (2, 9). 

In recent work the technique of time series prediction has been used to effectively 
characterize irregular complex time series and separate nonlinear deterministic 
(chaotic) from different forms of stochastic behavior (10-12). To reliably 
discriminate between nonlinear determinism and stochastic dynamics in a time 
series the technique of surrogate random data has been used (13, 14) . Predictive 
models have shown to be particularly effective when applied to short time series 
containing on the order of a couple of hundred data points (1 1, 12). Differences in 
the system dynamics are reflected in different degrees of predictability. This 
approach has been applied to the classification of various biological time series 
(15) as for example EEG (electroencephalogram) data (16), ECG 
(electrocardiogram) data ( I  7) and experimental data from simple neuronal circuits 
(18, 19) 

Here we apply the technique of time series prediction in conjunction with the 
technique of generating random surrogate data for classifying and characterizing 
the dynamics of PTH secretion in nine healthy subjects, six patients with 
osteoporosis, atld four patients with hyperparathyroidism. In a recent study using 
standard nonlinear analytical techniques such as the calculation of the correlation 
dimension (20), the Lyapunov exponents (21) and Kolmogorov entropy (22) 
compared with surrogate random d.ata we could demonstrate nonlinear 
determinism (chaos) in three 21 h viz. 24h PTH time series from healthy subjects 
(23). These PTH time series (Fig. 1) exhibit an irregular temporal pattern of 
secretion corresponding to broadband power spectra (Fig 2). 
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FIGURE 1. Time series of parathyroid hormone (PTH)-(1-84) plasma concentration in 3 
healthy male subjects. 

METHODS 

Subjects 

Twelve healthy men (aged 24-42 years), three women with postmenopausal 
osteoporosis (aged 55-62 years), three men with idiopathic osteoporosis (aged 
3 1-42 years), one male (56 years), and three female patients (aged 60-65 years) 
with primary hyperparathyroidism took part in this study. The studies reported 
here were approved by the local Committee on Medical Ethics, and all subjects 
gave their informed written consent Some of the subjects in this study as well as 
the details on design and measurements can be found in detail earlier (2, 9, 23) 

Hormone analysis 

In three of the healthy subjects, blood samples were taken every two minutes over 
an extended period (2 1 hours for one subject and 24 hours for the other two) for 



FIGURE 2. Fourier power spectrum of PTH concentration time series from Fig. 1. 

determining the PTH plasma concentration. In the remaining 9 healthy subjects, 6 
osteoporotic patients, and 4 patients with hyperparathyroidism PTH serum 
concentrations were also measured at two minute intervals, but over much shorter 
periods of time (3 .5  to 9 hours) as shown in Figure 3 .  All PTH concentrations 
were measured in duplicate using either a two-site chemiluminometric (sandwich) 
immunoassay (Magic Lite Intact PTH, Ciba-Corning Diagnostics Corporation, 
Medfield, MA, intra-assay coefficient of variation (CV) 3 4%, inter-assay CV 
4 .3%) or an intact PTI-1 inlmunoradiometric assay (Nicols, San Juan Capistrano, 
CA, intra-assay CV 5. I%, inter-assay CV 7.8%). Blood samples (1 ml) were 
drawn via a central venous catheter Throughout the study, the subjects rested in 
bed. 
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FIGURE 3. Three representative PTH plasma concentration time series in a A) healthy 
subject, B) osteoporotic patient, and C) patient with hyperparathyroidism. 

Time series prediction 

Neural network approaches have been demonstrated to be powefil tools for 
time series prediction (24). Such a neural network model predicts the next value 
x(t,) of a time series from a number of previous values. 

where x(t,.,) is the value at time t,.,, m is the number of previous values used for 
prediction, and ei represents noise or fitting error The model f is selected by 
minimizing some measure of misfit (such as mean square error) in a set of training 
examples selected from the samples of the time series 

In our study we used feedforward networks with nonlinear (sigmoidal) activation 
functions .as well as linear activation functions (equivalent to autoregressive 



models) to predict future values of the time series of PTH serum concentrations 
This form of a preditor was chosen because it is relatively easy to control 
over-fitting using regularization functions and cross-validation Such 
connectionistic models have shown to be efl-ective to predict short (noisy) time 
series (24-27) 

The neural networks were trained to predict one time step into the future. To 
predict multiple time steps ahead the value predicted one time step ahead was 
iterated by feeding it back into the input of the network If the predicted value one 
step into the future is. 

$ti) = f (d ( ,~J ,~~ l -2 ) ,  .-, df,-,")) ( 2 )  

then the predicted value two time steps ahead is defined as 

To predict any desired number of time steps into the future this procedure can be 
repeated. The prediction error was estimated using the srverugc relutwe vurrunce 
(u17J) 

where the angle brackets denote the over all mean and 02(x,) denotes the variance 
of the indexed variable. 

To improve the signal to noise ratio in our experimental data the raw PTH time 
series were filtered prior to the connectionist approach using an acausal filter (28) 
which has been shown not to affect certain nonlinear measures as for example the 
correlation dimension. 

Training and testing of predictive models 

A large variety of different network architectures was explored, applying 
feedforward networks with linear as well as nonlinear (sigmoidal) activation 
functions with 5 to 15 input units, 0 to 5 hidden units, and 1 output unit. A 
regularization technique (26) was used to control ovefitting to the training data, 
with the weight assigned to the rebwlarization term chosen by cross validation The 
value for the regularization term varied from for the nonlinear networks to 
10~'"or the linear networks. The weights were updated by a conjugate gradient 
descent method. (For a linear model, this fitting technique is formally equivalent to 
a least-squares linear fit ) 



Networks for the healthy group were trained using pooled time series data from 
the three healthy male subjccts whose PTH,serum concentrations were measured 
every 2 minutes over extended periods of 21 viz 24 hours Predictive networks for 
the patients with osteoporosis viz hyperparathyroidism were trained using a "leave 
one out" technique where all data from the patient group besides the time series to 
be predicted were used for training The performance of a large variety of network 
architectures as described above was compared using the crr-v as measure for the 
prediction error 

Because of their predictive performance a nonlinear 15 input units, 5 hidden units 
and I output unit network with sigmoidal activation functions and a 15 input units 
and I output unit linear network were used for the simulations discussed in the 
remainder of this paper Afier training with pooled data within each subject viz 
patient group the network was used for predicting each of the time series from the 
three groups 

To measure the degree of predictability the prediction error arv was computed 
for each ofthe nineteen test subjects as a function of the number of steps predicted 
into the future as well as for ten surrogate time series generated by two different 
procedures as explained below. The number of time steps for each time series 
where the fin' reached a value of 0 5 was recorded This cut-off criterion ensures . 
that the predictive model is still useful for predicting the system dynamics whereas 
an an1 of I .O may be achieved by always guessing the mean of the time series as 
the predicted value. 

Surrogate data 

We generated surrogate data as statistical controls for our experimental data to 
test the null hypothesis that the predictive results can be explained by a stochastic 
process. Surrogate data are randomized versions of the original data sets 
preserving certain statistical features of their originals. For each original time series 
we generated ten surrogate data time series by two different procedures as 
proposed by Theiler et al. (13). 

Phase randomized surrogate data 

In this procedure the original time series is Fourier transformed to obtain phase 
and amplitude spectra. The phases are randomized using, i.i.d (independent 
identically distributed) random numbers from an [0, 2n] interval and after 
transforming back to the time domain one gets a randomized version of the 
original time series which preserves the power spectrum, the mean, the standard 



deviation, and the autocorrelation. This sort of surrogate data is used to test the 
null hypothesis that the results can be explained by using data From a Gaussian 
linear stochastic process. Other types of surrogate data are necessary since this 
procedure does not preserve the histogram of the signal amplitudes 

Gaussian scaled surrogate data 

Gaussian scaled surrogate data are generated by shuffling the original data in 
such a way that the amplitude distribution of the original is preserved and that the 
power spectrum remains very similar but not identical as in the case of the phase 
randomized surrogates. Using this sort of surrogates we can test the null 
hypothesis that our results can be explained by testing data from a nonlinear static 
transformation of a linear stochastic process. 

Statistical significance 

To measure the amount of deterministic structure that might have been destroyed 
by either of the randomization techniques we,used the significance level S, defined 
as 

where Tis the prediction time step where the am exceeds a value of 0.5. The angle 
brackets denote the over all mean of ten surrogate time series generated for each 
original by either of the two methods and a is the standard deviation of the results 
obtained from the surrogates. 

RESULTS 

Using a large variety of linear as well as nonlinear neural network predictors we 
found a linear increase of the prediction error am within the osteoporotic patients 
whereas the healthy subjects and the patients with hyperparathyroidism showed a 
saturation of the arv on a much lower level than the osteoporotic group. Figure 4 
displays the predictive results of a 15 input units, 5 hidden units and 1 output unit 
network with sigmoidal activation hnctions and a 15 input unit and 1 output unit 
network with linear activation functions. However, the performance between linear 
and nonlinear predictors in general was not significantly different within each 
group (Fig. 5). 
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FIGURE 4. Prediction error arvversus prediction step (2 min) for normal subjects (n=9, 
solid line), patients with osteoporosis (n=6, dashed line), and patients with 
hyperparathyroidism (n=4, dotted line). A) 15 input units, 5 hidden units, and 1 output unit 
neural network with sigmoidal activation functions. B) 15 input units. 1 output unit neural 
network with linear activation functions. 

To test for nonlinear determinism we evaluated the predictive ability of our neural 
network on 10 phase randomized and 10 Gaussian scaled surrogate data sets We 
could demonstrate a significance level S between 1 9 and 2 3 for the predictabilty 
of time series from all three groups compared to their corresponding Gaussian 
scaled surrogate data using a nonlinear network (Table 1) Only the normal 
subjects showed a relatively low significance level S of 1 0 for the diff&ence 
between the predictability of the original time series and the corresponding phase 
randomized data sets whereas the osteoporotic patients and hyperparathyroid 
patients did not show a significant difference. Using a linear predictor for 
comparing its predictive ability for the original data with.that for the surrogates we 
found similar results (Table 2). A significant difference from both types of 
surrogate data could be found only for the normal subjects with significance levels 
S above 2.0. Although the predictability in some of the osteoporotic patients and 



patients with hyperparathyroidism was above a significance level of 2 (more than 
two a different from the surrogates), no significant difference could be found for 
both patient groups. 
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FIGURE 5. Predictability of a nonlinear 15 input unit, 5 hidden unit, and 1 output unit neural 
network(l) versus linear 15 input unit and 1 output unit neural network(*). Mean arv * 
standard deviation. A) normal subjects, 6) patients with osteoporosis C) patients with 
hyperparathyroidism. 

Whereas some time series from the osteoporotic and the normal group had a 
significantly higher predictability than their phase randomized counterparts such 
behavior could not be demonstratpd for any of the hyperparathyroid patients. 
Figire 6 displays the prediction error crrv versus the prediction step for the original 
time series and both types of surrogate data from one healthy subject viz. patient 
of each group using the 15 input units sigmoidal neural network. The prediction 
error for the normal subject lies below the scatter of both types of surrogates for 
most of the time steps whereas the prediction error for the osteoporotic patient 
keeps within the scatter of both types of surrogate data sets for all prediction time 
steps. In the hyperparathyroid patient we find an almost undistinguishable 
prediction error mv for the original time series from that of the phase ranomized 
surrogate data However, the urv of the original data lies outside the scatter of the 
Gaussian scaled surrogates for all prediction steps 

Using a linear network with the same length of the input window (Fig. 7) the 
difference of the prediction error crnl  between the surrogate scatter and the original 



TABLE 1. Prediction step (in 2min) where the arv exceeds 0 5 (1 5-5-1 nonlmear network) 
Statistics using the significance level S as described above 

group original phase Gaussian I vs. II I vs. Ill 
(1) surrogates surrogates 

(11) (111) 

normals 6.6f3.2 6.0*2.7 4.7kl 7 1 .O 2 3 

osteoporosis 4.6Q.6 5.1f2.6 3.1f0.6 0.1 1.9 

hyperparathyroidism 8.0f4.1 6.5k2.5 2.2f0.5 0.5 2.2 

TABLE 2. Prediction step (in 2min) where the arv exceeds 0.5 (15-1 linear network) 
Statistics using the significance level S as described above. 

group original phase Gaussian I vs. II I vs. Ill 
(1) surrogates surrogates 

(11) (111) 

normals 6.2Q.7 4.9f3.0 4.0Q.2 2.1 2.9 

osteoporosis 3.6fl .5 4.2i2.5 2.7iU.9 0.6 1.6 

hyperparathyroidism 7.3f2.6 6.9f2.7 3.9f1.7 0.2 1.8 

in the normal subject decreases and the ostoporotic subject displays a clearly 
reduced predictability than using a nonlinear predictor. The prediction error of the 
hyperparathyroid subject is not distinguishable from both types of surrogate data 

DISCUSSION 

We found no evidence of a highly predictable saturating component in any of the 
osteoporotic time series using our predictive approach. Although the 
hyperparathyroid patients demonstrated high predictability similar to that of the 
normal subjects it was only significantly different from their corresponding 
Gaussian surrogate data sets using a nonlinear predictor. The osteoporotic group 
did not show a significant difference between the predictability of the original data 
and both types of surrogates using linear as well as nonlinear predictors 

Confirming results from a former study on nonlinear determinism in extended 
time series of PTI-I concentration in healthy subjects we could observe significant 
nonlinear determinism in nine shorter time series of healthy subjects using linear 
and nonlinear time series prediction and statistical tests against phase randomized 
as well as Gaussian scaled surrogate data sets This suggests that osteoporotic 
patients and patients with hyperparathyroidism have lost at least in part nonlinear 
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FIGURE 6. Predictability of a 15 input units, 5 hidden units, and 1 output unit nonlinear 
neural network for original time series(.) and mean * standard deviation of 10 phase 
randomized surrogate data sets (.) viz. 10 Gaussian scaled surrogate data sets (A). A) 
normal subject. 8) patient with osteoporosis, C) patient with hyperparathyroidism. 
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FIGURE 7. Predictabilrty of a 15 input units and 1 output unit linear neural network for 
original time series (0) and mean * standard deviation of 10 phase randomized surrogate 
data sets (.) viz. 10 Gaussian scaled surrogate data sets (A). A) normal subject, 8) 
pabent with osteoporosis, C) patient with hyperparathyroidism. 



deterministic stnlcture in their secretory dynamics of PTH 

The major dynamic regulator for the normal coupling of bone resorption and 
formation in the bone remopdeling process appears to be found in the 
predictability of the secretory dynamics of PTI-I 

However, a detailed understanding of the secretory dynamics of PTH and bone 
anabolic properties is still lacking Our data provide first evidence that states of 
high predictability are a regular finding in subjects with normal bone mass and 
metabolisni as well as patients with hyperparathyroidisn~ both of which have a 
preserved normal bone structure 

Consequently, if a high rate of change of PTI-I concentration is the significant 
factor in maintaining normal bone remodeling, frequent application of PTI-I with 
large doses may be even more effective than daily injections as are used in current 
treatment protocols of osteoporosis Application of large pulses of PTI-I on an 
hourly scale might be feasable with the use of a hormone pump, an important field 
for future investigation 

We found no significant difference in the predictive ability of linear and nonlinear 
networks for the PTH concentration time series from all groups However, using 
cIassical nonlinear analys.is, we have seen evidence for nonlinear determinism and 
conceivably low-dimensional deterministic chaos in the irregular pattern of PTH 
secretion in healthy human subjects (23) These results are confirmed by 
comparing time series prediction of the original data with phase randomized as 
well as Gaussian scaled surrogate data Our results are also in accordance with the 
findings of Blinowska and Malinowski (22) who demonstrated that the irregular 
nonlinear EEG signal could be predicted equally well or even better by a linear 
autoregressive model than by the nonlinear prediction model proposed by Sugihara 
and May (20) 

These results differ from others who have compared linear and nonlinear 
predictive models This may be due to the relatively small amount of data available 
in our study ( I  1. 24, 25). 

One limitation in our studies is the time period over which PTH concentrations 
can be measured. Longer periods may only be performed by an online biosensor 
for PTH to avoid the blood loss due to frequent blood sampling. Such a biosensor 
for PTH is not yet available although biosensors containing biological receptors 
such as the nicotinic acetylcholine receptor (29-3 1 )  and the L-glutamate receptor 
(32) have been developed 

Time series prediction has been established as a valid tool for the characterization 
and classification of the dynamics in a variety of biological systems. Using the 



technique of surrogate data null hypothesis can be constructed to statistically 
distinbwish between stochastic and deterministic behavior in the dynamics and gain 
new insight into the physiological regulation of episodic hormone secretion in 
cases where simple linear methods such as computing the mean value of a time 
serres or the power spectrum might fail to distinguish normal from disturbed 
pattans. Our results suggest that the PTH secretory pattern in healthy subjects is 
an esample of nonlinear determinism which seems to be lost in part in two bone 
diseases, osteoporosis and hyperparathyroidism 

ACKNOWLEDGMENTS 

S J N. and T. J. S were supported by I-loward Hughes Medical Institute K P 
and G. B were supported by the Derrtsche l~or.schr~ttgsget~ie~~~schufi under grant 
Pr 3331 1-2 and grant Br 9 1514- 1 

REFERENCES 

1 Brabant, G., Prank, K., and Schofl, C , 7i.ends Etrdocrmol. Mcrcrh. 3, 183- 190 
( 1992) 

2 I-Iarms, H.M., Kaptaina, U , Kulpmann, W.R , Brabant, G.,  and liesch, R D., 
.J. ('11t1. 131docrrtlol. Merub. 69, 843-851 (1989) 

3 Kitamura, N., Shigeno, C., Shiomi, K., Lee, K., Ohta, S., Sone, T., 
Katsushima, S., Tadamura, E , Kousaka, T., and Yamamoto, I., J. C ' h .  
/:irdocrrnol. M m b .  70, 252-263 ( 1990). 

4 Kripke, D.F., Lavie, P., Parker, D., Muey, L., and Deftos, L.F , J. C%'lill. 
fitrdocrrtlol. M m h .  47, 102 1 - 1027 (1 978). 

5 Liu, C C , Kalu, D N , Salerno, E , Echon, R , Hollis, B W , and Ray, M , J. 
How M~ticr. Rex 6 ,  107 1 - 1080 ( 199 1 ) 

6 Podbesek, R., Edouard C., Meunier, P.J , Parsons, J.A., Reeve, J., Stevenson 
R W , and Zanelli, J.M., I~~rdocritlology 112, 1000-1006 (1983). 

7 Tam, C.S., Heersche, J.N., Murray, T M., and Parsons, J.A , I<t~docr. i trol~ 
110, 506-5 12 (1982). 



8 Parisien, M . Silverberg, S J , Shane, E , de la Cruz. 1, , Lindsay. R , 
Bilezikian, J P , and Dernpster, D W , .I. ('lrtr. /<trrhcr~r~ol. M w h .  70, 930- 
938 (1 990) 

9 Ilarrns, H.M , Schlinke, E . Neubauer, 0 , Kayser, C , Wustp-mann P R , 
Horn, R , Kulpmann, W R , von zur Muhlen, A , and Hesch R D .I. ('h~r. 
E~rdocrrirol. Metah. 78, 53-57 ( 1994) 

10 Casdagli, M , Dcs Jardins. D , Eubank, S , Farmer, J D , Gibson. J , Hunter, 
N , and Theiler, J , "Nonlinear modeling of chaotic time series theory and 
applications " Eclirrrcul lieport No. LA-UR-9 1 - 1637. Los Alamos National 
Laboratory (I 99 1)  

1 I .  Sugihara, G., and May, R.M., Ncrirwe (1,ord) 344, 734-741 (1990) 

Tsonis, A.A., and Elsner, J.B., Nutwe ( Imd. )  358, 21 7-220 (1992) 

Theiler, J., Eubank, S , Longtin, A ,  Galdrikian, B , and Farmer, J D , 131g:s~trr 
D 58, 77-94 ( 1992) 

Schiff, S.J., Sauer, T , and Chang, T , htegrairvc P h p o l .  Rehuv. SCI. 29, 
246-26 1 (1 994). 

Sugihara, G., IJhil. Trarrs. R. Soc. Lond. A 348, 477-495 (1994). 

Blinowska, K.J., and Malinowski, M. Rid. ('yhenr. 66,  159-165 (1991) 

Lefebvre, J.H., Goodings, D A., Kamath, M V., and Fallen, E.L , Chaos 3, 
267-276 (1993). 

Chang, T., Schiff, S.J., Sauer, T , Gossaed, J.P., and Burke. RE. ,  Riophys. J. 
67,671-683 (1994). 

Schiff, S.J., Jerger, K ,  Chang, T., Sauer, T., and Aitken, P.G , B~ophys. J. 67, 
684-69 1 (1 994). 

Grassberger, P., and Procaccia, I , 1'hy.v. Rev. Lett. 50, 346-349 (1983) 

Wolf, A,, Swifi, J B., Swinney, H.L., and Vastano, J.A., Phys~ca D 16, 285- 
317 (1985) 

Grassberger, P , and Procaccia, I , Phys. Rev. A 28, 2591-2593 (1983) 



23. Prank, K., Harms, K., Dammig, M., Brabant, G., Mitschke, F.', and Hesch, 
R.D., Anr. J. Physiol. 266, E653-E658 (1994). 

24 Weigend, A S , and Gershenfeld, N A (eds ), Tme serres pred~ctrot~: 
Forecusta~g the firture utrd rrrldcrstutrdrt~g the yust. SF1 Studies in the 
Sciences of Complexity, Proc Vol XV, Reading, MA, Addison-Wesley, 
(1 993) 

25 Lapedes, A S , and Farber, R M , "Nonlinear signal processing using neural 
networks. prediction and system modeling " ~ k ~ h t ~ i c u l  Report No. 
LA-UR-87-2662, Los Alamos National Laboratory (1987) 

26 Nowlan, S.J., and F3inton.G E , Nerrrul ('omput. 4 ,  473-493 (1992) 

27. Weigend, A.S., Huberman, B.A , and Rumelhart, D.E., I~~ter.~ratror~ulJorrrt~af 
of Neural Systems 1 ,  193-209 ( 1990) 

28. Mitschke, F. Phys. Rev. A 4 1 ,  1 169- 1 17 1 ( 1  990). 

29. Eldefrawi, M. E., Sherby, S.M , Andreou, A.G., Mansour, N.A., Annau, Z., 
Blum, N.A., and Valdes, J.J.Anu1. Len. 21, 1665-1680 (1988). 

' 

30. Gotoh, M., Tamiya, E., Momoi, M., Kagawa, Y., and Karube, I. Anal. Left. , 

20, 857-870 (1987). 

3 1 .  Gotoh, M., Tamiya, E., and Kambe, I. J, Mernhrane Sci. 41 ,  29 1-303 (1 989). 

32. Uto, M., Michaelis, E.K., Hu, I.F., Umezawa, Y., and T. Kuwana. Anal. Sci. 
6, 221-225 (1990).. . 




