
Learning to Extract Local Events from the Web

John Foley
∗

Center for Intelligent
Information Retrieval

University of Massachusetts
jfoley@cs.umass.edu

Michael Bendersky
Google

bemike@google.com

Vanja Josifovski
∗

Pinterest
vanja@pinterest.com

ABSTRACT
The goal of this work is extraction and retrieval of local events
from web pages. Examples of local events include small venue
concerts, theater performances, garage sales, movie screen-
ings, etc. We collect these events in the form of retrievable
calendar entries that include structured information about
event name, date, time and location.

Between existing information extraction techniques and
the availability of information on social media and semantic
web technologies, there are numerous ways to collect commer-
cial, high-profile events. However, most extraction techniques
require domain-level supervision, which is not attainable at
web scale. Similarly, while the adoption of the semantic web
has grown, there will always be organizations without the
resources or the expertise to add machine-readable annota-
tions to their pages. Therefore, our approach bootstraps
these explicit annotations to massively scale up local event
extraction.

We propose a novel event extraction model that uses dis-
tant supervision to assign scores to individual event fields
(event name, date, time and location) and a structural algo-
rithm to optimally group these fields into event records. Our
model integrates information from both the entire source
document and its relevant sub-regions, and is highly scalable.

We evaluate our extraction model on all 700 million docu-
ments in a large publicly available web corpus, ClueWeb12.
Using the 217,000 unique explicitly annotated events as
distant supervision, we are able to double recall with 85%
precision and quadruple it with 65% precision, with no addi-
tional human supervision. We also show that our model can
be bootstrapped for a fully supervised approach, which can
further improve the precision by 30%.

In addition, we evaluate the geographic coverage of the
extracted events. We find that there is a significant increase
in the geo-diversity of extracted events compared to exist-
ing explicit annotations, while maintaining high precision
levels.

∗Work done while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
SIGIR’15, August 09-13, 2015, Santiago, Chile.
ACM 978-1-4503-3621-5/15/08.
DOI: http://dx.doi.org/10.1145/2766462.2767739 .

Categories and Subject Descriptors
H3.3 [Information Storage And Retrieval]: Information
Search and Retrieval

Keywords
Information Retrieval; Information Extraction

1. INTRODUCTION
With the increasing trend toward personalized mobile appli-
cations and user experiences, there is a need for information
systems that react to user preferences and location. In the
past few years, this challenge has gathered more attention in
the research community. Lagun et al. find that not only is
local context useful in search, but that users are interested
in explicit feedback in locality-sensitive tasks [16]. The Con-
textual Suggestion Track in the Text Retrieval Conference
(TREC) presents the task of recommending establishments
or venues to users given the preferences of a user in another
city [5]. In this work, we explore a similar task, presenting
users with events near them, rather than locations. Unlike
the contextual suggestion track, we move away from whole-
page relevance judgments toward extracting relevant atomic
event records.

We define an event as an object having three mandatory
properties, keeping in mind our goal: to recommend, display,
and make searchable all events that can be extracted from
the web.

Definition An event occurs at a certain location, has a
start date and time, and a title or description. In other
words, to be useful to a user, an event must be able to
answer the questions: What?, When?, and Where?

Succintly, we are interested in events that users may want
to add to their calendars to be reminded of and potentially
attend. This is in contrast to many other definitions of an
event, such as those in works discussing real-time detection
of natural disasters, riots, pandemics or terrorist attacks in
microblog streams [26, 36, 20], or the classic event definition
in computational linguistics, which can be as broad as “a
situation that occurs” [25].

Before a recommendation system for events can be created
and evaluated, there is the information extraction challenge
of discovering and collecting all available events in all areas.

Simple approaches to this problem include:

• Mining and recommending events from social media [14].

• Leveraging semantic web annotations like Schema.org1.

• Traditional wrapper induction and data mining.

Unfortunately, both semantic web and social media ap-
proaches require organizations to maintain their data in a
particular format. With social media, this means an up-
dated organization page, and with semantic web technolo-
gies, this means marking up the page with microdata (e.g.,
Schema.org). Unfortunately, smaller businesses, charities,
and truly local organizations will lack the funding or the
expertise required to fully and correctly adopt semantic web
technologies.

Similarly, most existing approaches to information extrac-
tion require supervision at either the page or domain level,
or some sort of repeated element structure [34]. As it would
be infeasible and costly to annotate all such pages - or even
a single page per domain, existing systems that mine for
events or other structured data fall short of our goal of local
event extraction from all web pages.

Examples of events that we consider local and that are
unlikely to have existing markup, or sufficient social media
presence are farmer’s markets, poetry readings, library book
sales, charity dinners, garage sales, community band concerts,
etc. These events are of interest to a smaller, local community,
and are unlikely to be selling tickets on high-profile sites or
paying for advertisement.

In this work, our goal is to leverage the well-advertised,
high-profile events to learn to extract a greater variety and
depth of events, including the kinds of local events described
above. Specifically, we leverage the existing Schema.org

microdata annotations (there is an example of how these
annotations appear in Figure 1) as a source of data for distant
supervision, allowing us to learn to extract events that do
not have semantic web annotations, including local events,
without actually collecting judgments specifically for our
task.

We introduce a model for scoring event field extractions
and an algorithm that groups these fields into complete event
records. We scale up our technique to the entire ClueWeb12
corpus (700 million pages), extracting 2.7 million events. We
evaluate our precision at various recall-levels, and show that
we can double event coverage of a system with respect to
the available semantic web annotations at an 85% precision
level. We briefly explore using our judgments for a supervised
approach to this task and are able to improve precision by
30% on another million events with only 30 annotator-hours.

We also explore the geographic diversity of our dataset,
finding that existing markup is heavily biased toward large
cities (e.g. New York, Chicago, and Los Angeles) and that the
results of our extraction cover a wider variety of locations. We
validate this hypothesis via visual mapping, and by showing
that we have good precision in a random sample of 200 cities
across the world.

In the next section, we introduce related work in detail. In
Section 3, we introduce our event field extraction and scoring
model, and our event record grouping algorithm. In Section 4,
we discuss our corpus and our judgments in more detail, and
we present the results of our experiments in Section 5. We
end with our conclusions in Section 6.

1http://schema.org/Event

Figure 1: Example Microdata adapted from Schema.org

<div itemscope itemtype=‘‘http://schema.org/Event’’>

Miami Heat at Philadelphia 76ers

<meta itemprop=‘‘startDate’’

content=‘‘2016−04−21T20:00’’>
Thu, 04/21/16 8:00 p.m.

<div itemprop=‘‘location’’ itemscope
itemtype=‘‘http://schema.org/Place’’>

Wells Fargo Center
<div itemprop=‘‘address’’ itemscope

itemtype=‘‘http://schema.org/PostalAddress’’>

Philadelphia
,
PA

</div>
</div>

</div>

2. RELATED WORK
Our work is characterized by using the explicitly annotated
Schema.org as training data to learn to extract local events
from the web. While there is work looking at events on social
media, work leveraging semantic web annotations, and work
on extraction in general, to our knowledge, our work is the
first to leverage this data in this way, and the first to attempt
this task.

2.1 Similar Tasks
The Contextual Suggestion Track [5] considers the task of
a known user spending time and looking for entertainment
in a new city. Evaluation is done on the snippet and page
level, with users judging sites as interesting or not, effectively
making the task about retrieving venues or establishments.
In a similar motivation, we would like to consider the task
of finding events relevant to a user in their current location,
but because no large corpora of events exist, we consider first
the task of extracting local events.

There are numerous works that identify the availability of
semantic web information [27, 21, 3] but there is very little
prior work on using this information as a source of distant
supervision. Petrovski et al. use Schema.org annotations
for products to learn regular expressions that help identify
product attributes such as CPU speed, version, and product
number [22]. Gentile et al. work on dictionary-based wrapper
induction methods that learn interesting XPaths using linked
data [7, 8]. Because Linked Data websites like DBPedia and
Freebase are not typical web pages as those with Schema.org

data, the structural features we are able to learn are not
available in these works. We also attempt to learn about less
structured fields, in particular, our What? aspect of events.

Another similar work comes from the historical domain.
Smith worked on detecting, and disambiguating places and
dates within historical documents in a digital libraries setting.
He looked at collocations between these places and dates as
events, and ranked them to identify significant date-place
collocations that might merit further study by historians [32].
In a follow-up work, he looked at associating terms with
these collocations and building interfaces for browsing [31].

2.2 Event Detection in other Domains
There is an entire class of work on detecting events within
microblogs or real-time social media updates [26, 36, 20].
Becker describes identification of unknown events and their
content in her thesis, but focuses on trending events on social
media sites, and classification is used to separate event from
non-event content clusters [2]. Our work, in contrast, is
looking to find events in an offline manner that are explicitly
described so as to present them in a search or recommenda-
tion system to users.

Kayaalp et al. discuss an event-based recommendation
system integrated with a social media site, but focus on
events already available through Facebook and Last.fm [14].
In this work, we consider these social media sites as two
examples of the larger concept of “head domains” which
are likely to have or adopt semantic web technologies, or
be worthwhile candidates for supervised wrapper induction
techniques.

Extraction of named events in news is another topic in
which there has been work, e.g., [15]. Again, the definition of
these news events is different from our local event definition.

2.3 Information Extraction
In the extraction domain, there is an immense amount of
work on reducing boilerplate, whether directly, through tem-
plate extraction [10, 23, 18], or through the more general idea
of region extraction and classification. Sleimen and Corchuelo
provide a detailed survey of region extractors in web doc-
uments, including those that leverage visual features [29].
Region extractors, in general, attempt to classify portions of
a page into their purpose, i.e. navigation links, main content,
and are studied in part to index only the content present
on web pages. At least part of our task could be phrased
within this context: an attempt to classify regions as either
containing an event or not.

Work on temporal knowledge bases and extraction needed
for automatic construction is similar to our task [11], except
in a different domain and context. Most popular knowledge
bases, have some ties to Wikipedia, which requires articles
to be notable. By definition, we are seeking to extract events
that do not have global relevance.

Additionally, there are a number of works that focus on
repeated structure for extraction. Taking cues from HTML
tables [9, 17, 4, 1, 39], or repetitive command tags or terms in
general [34], these techniques do not require microdata, but
require repetitive structure and make the assumption that
there will always be a multitude of records to extract [35].
Recently, there has been a number of works about extracting
data from web documents that were generated from the same
templates [12, 30, 28]. In contrast to these works, we are
interested in extracting local event records, which may or
may not be generated from a pre-specified template.

3. EVENT EXTRACTION MODEL
We approach the task of extracting structured event infor-
mation as a scoring or ranking method. We do this because
we do not expect our target data – the listings of events
on the web – to be particularly clean or perfectly aligned
with any schema. Therefore, we wish to have a technique
that joins several field scoring functions, which together
give a multi-faceted score of how well the extracted struc-
ture fits our model of an event. The scoring functions take
into account the source web page (Section 3.1), extraction

sub-region (Section 3.2), and the individual extracted fields
(Section 3.3).

The fact that there may be multiple extractions from
overlapping regions on the page, poses an additional challenge
of grouping the extracted fields into disjoint event records
that contain event name, date, time and location. To this
end, we propose a greedy selection and grouping algorithm
that provides an efficient way to optimize the quality of
extracted event records. This algorithm is described in detail
in Section 3.4.

Formally, we represent each extracted event record as a
set of fields (F = {f1, f2 . . . fn}), their enclosing region (R),
and the source document (D).

Figure 2: Example of an HTML document structure, presented
visually. The boxes present represent nodes, the white boxes are
the ones that are plausibly detected as fields in this example.
Subsets of these fields represent possible event extractions.

An example HTML document is shown in Figure 2. If
we consider the case where this document represents only
one event, it is likely that Fields A,B, and C (F) are the
key fields in our event, and that the date in the navigation
bar and in the copyright are false-positive fields. An event
extraction only including the copyright field should get a low
score, and similarly, the event containing all the fields should
be considered too big and also receive a low score. We define
the region of a fieldset to be the first shared parent of its
fields, so for fields A and B, the R should be the box that
contains all lettered fields, the image and the text node.

We formulate our scoring function, φ, which relates all our
available context, as follows

φ(F ,R,D) = α(D)β(R)γ(F)

We discuss the scoring components in order, and note
where we adapted this object-general model to our event
domain. Our document scoring, α(D), our region scoring
β(R), and our field scoring γ(F) are discussed in depth in
the following sections.

3.1 Document Scoring
We want our event scoring function to take into account the
page’s likelihood of discussing an event, therefore we include
a document-level score (α(D)).

We take a naive-Bayes approach to this problem, and
examine the probability of a web page discussing an event
(belonging to the event class). We denote the candidate
document D and the event class E, and consider the following
ratio

P (E|D)

P (E|D)
> 1.

In other words, we consider a page worth investigating if the
probability of it belonging to the event class (E) is higher
than the probability that it does not belong to the event
class (E). In practice, the division of small fractions can
lead to underflow, so we consider the equivalent relationship,
asking whether the so-called log-odds of a page belonging to
an event class is greater than zero.

logP (E|D)− logP (E|D) > 0

We estimate these probabilities based upon the commonly-
used language modeling framework introduced by Ponte and
Croft [24]. In the language modeling framework, we estimate
the probability of a word given a model X (which will be one
of {E,E}) as the probability of drawing it randomly from
the bag of words that is that model.

P (w ∈ X) =
tf(w,X)

tf(∗, X)

The bag of words assumption means that we can treat
all our terms as being independent, and we estimate the
probability of a whole document by the probability of all its
component terms (w ∈ D) under the model.

P (D ∈ X) =
∏
w∈D

tf(w,X)

tf(∗, X)

Because our event class may be sparse in comparsion to
any given document, we apply linear smoothing [13] to our
positive class to avoid zero probabilities.

P (E|D) =
∏
w∈D

λP (w ∈ E) + (1− λ)P (w ∈ C)

In contrast, because we approximate our non-event class
by the language model of the entire collection, E = C,
no smoothing is needed because all terms are present by
construction.

P (E|D) =
∏
w∈D

P (w ∈ C)

Since we run our algorithm on millions of pages, we chose
to use this page scoring mechanism as a first pass filter,
restricting our calculation of other scoring components to
those whose α(D) > 0, where α is defined as follows:

α(D) =

{
1 logP (E|D)− logP (E|D) > 0
0 otherwise

What remains now is identifying an initial set of docu-
ments that are used to construct the language model for
the event class E. For this, we bootstrap existing semantic
annotations on the web. Specifically, we consider all the

pages that contain any http://schema.org/Event annota-
tions (see Figure 1 for an example) as belonging to the event
class E, since mark-up by their creators suggests that they
discuss events. Overall, we have close to 150,000 such pages,
which allows creating a robust event model.

3.2 Region Scoring
Region scoring (β(R)) is considered on the enclosing region
R in the document. Since this region encloses all of event
potential fields, it is a good unstructured representation of the
extracted event. In fact, we present this enclosing region to
annotators to understand our event prediction performance
separately from our field prediction.

Therefore, we decided on a simple region filtering approach,
which simply removed from consideration regions above cer-
tain length

β(R) =

{
1 |R| < τ
0 otherwise

τ is set to 212 in all the subsequent experiments. Our
empirical evaluation have shown that this simple approach
effectively removed the majority of bad regions. In fact,
we considered a number of more sophisticated approaches,
including learning probability distributions of the size of the
region and enclosing region tags. However, in experiments
not listed here due to space constraints, we found the effects
of such additional information negligible, especially since
region features were included on a per-field basis within our
field-scoring functions (see Section 3.3).

3.3 Field Set Scoring
We explore field scoring in a way that requires at least one of
each required field to be part of our extracted field set (F).
Therefore our formulation for γ(F) includes both a scoring
function γS and an indicator function that tests for required
fields, γR.

γ(F) =

{
γS(F) γR(F)
0 otherwise

We will discuss the breakdown of the γS and γR functions
below. Generally, we jointly score field occurrences, and
this joint scoring considers the independent scores, δk(f),
assigned to each field f of type k ∈ {What,When,Where}.

3.3.1 Independently Scoring Fields
In this work, we consider a number of ways to assign inde-
pendent scores to fields that allows us to define δk(f) for
any f and k ∈ {What,When,Where}. Formally, we define f
as a tuple with a (begin, end) index range within the source
document D. Because the document itself has some HTML
structure, the offsets within the field allow us to understand
where in the structure of the page it occurs and leverage that
as part of our scoring features.

Pattern-based approaches to tagging of dates, times and
postal addresses in text yields results of reasonable accuracy,
as evidenced by the approaches in HeidelTime [33], Stan-
fordNLP [19], as well as some prior work on address detection
[38]. Therefore, we consider pattern-based baselines for our
extraction of event ‘When’ and ‘Where’ fields. While dates,
times, and places have inherent and sometimes obvious struc-
ture, patterns do not make sense as a baseline for the ‘What’
of an event, so we assign an equal score to all candidates.

Table 1: Features used in Field Classification.

Category Feature Description
Text Unigrams Stopped and stemmed

unigrams, hashed to
10,000 count-features.

Bigrams Stopped and stemmed
bigrams, hashed to
10,000 count-features.

NLP Capitalization Ratio of terms capital-
ized, first term capital-
ized.

Address overlap Number of address fields
that overlap the target
span.

Date overlap Number of date fields
that overlap the target
span.

Time overlap Number of time fields
that overlap the target
span.

Structural Size Ratio of size to parent
and to page.

Location Ratio of start and end
locations to page.

Attribute Text Unigrams present in at-
tributes; can capture
style information.

Parent tag Hashed vocabulary of
size 10 of lower-case par-
ent tag.

GrandParent tag Hashed vocabulary of
size 10 of lower-case par-
ent’s parent tag.

Sibling tags Hashed vocabulary of
size 1000 sibling tags.

Reverse XPath 10 features for each
XPath entry going back-
wards toward HTML.

No classification uses baseline approaches for all fields.

δWhat(f) = 0.5
δWhere(f) = matches(f,Address)
δWhen(f) = matches(f,Date/Time)

What classification uses baseline approaches except for
What fields.

δWhat(f) = ~WT
What · ~Xf

δWhere(f) = matches(f,Address)
δWhen(f) = matches(f,Date/Time)

What-When-Where classification uses multiclass clas-
sification to rescore the boolean baseline approaches
for all fields.

δWhat(f) = ~WT
What · ~Xf

δWhere(f) = matches(f,Address) · ~WT
Where · ~Xf

δWhen(f) = matches(f,Date/Time) · ~WT
When · ~Xf

Our baseline methods are implemented by the function
matches(f, rk) where f is a field, and r is a set of regular ex-
pressions for field type k, returning 1 if a field f is considered
a match for field type k, and 0 otherwise.

Our classification methods leverage features ~Xf extracted

from the candidate field f and weights ~Wk learned using LI-

BLINEAR [6]. The features used encompass textual, natural-
language, and structural features that are more fully de-
scribed in Table 1. Evaluation of these prediction methods is
discussed in Section 5.1. All other evaluations consider only
the What-When-Where classification method for independent
field scoring.

In order to train our classification methods we turn once
again to the pages in the event class E, described in Sec-
tion 3.1. Using these pages, we label all the HTML tags with
semantic mark-up related to one of our three target fields
(‘What’, ‘When’, ‘Where’) with their respective field type.
In addition, we label all other textual HTML tags on these
pages as ‘Other’. We then use this bootstrapped training
data to construct a multiclass classifier with label set

K = [′What′,′When′,′Where′, ‘Other′],

and learn a weight vector ~Wk, for each k ∈ K. See Section 4.3
for more details on this process.

3.3.2 Jointly Scoring Fields
Given FR = {What,When,Where} as the set of required
fields for an event, a field set F has all its required fields
if and only if γR(F) is true. We make the assumption
that the field type k, with the maximum score δk(f) is the
PredictedType of the given field f . Formally:

PredictedType(f) = argmax
k∈FR

δk(f)

We test for the presence of all required fields by contain-
ment; the required fields should be a subset of the predicted
types of the entire field set we are scoring. As an example, a
set of fields may comprise an event if it has an extra date or
time, but it may not if it doesn’t have a date or time at all.

γR(F) = FR ⊆ {PredictedType(f)|f ∈ F}
We combine the individual field scores within γS(F), our

field set scoring function, using the same notation as before
for per-field-type scorers (δk(f)).

γS(F) =
∏
f∈F

max
k∈FR

δk(f)

The individual score for each field is still labeled with a
function, δk(f), which computes the score for the maximally-
likely class for each field, reusing FR to describe the set of
required classes.

In this formulation, we expect the output range of δk to
be [0, 1]. Since our independent scores are all in this range,
it means that our function for γS will tend to prefer field
sets with fewer higher-scored fields, with γR ensuring that
we do not consistently predict incomplete events.

3.4 Event Record Grouping Algorithm
We consider all HTML tags that contain any baseline (reg-
ular expression pattern-based) matches on the page to be
candidates for field scoring, rather than exhaustively iter-
ating over all the subsets of text fields on the page. Even
with this relatively-smaller number of candidate fields, the
prediction algorithm is computationally difficult. Recall that
we have formulated our field scoring as a ranking problem.
Therefore, grouping these ranked fields into complete event
records is a variation of the general subset selection problem,
which is known to be NP-hard in most cases [37].

To ameliorate this problem, we choose to add a constraint
that no field may be used twice (predicted events should not
overlap) and to use a greedy approach to assigning fields
to event records, so that we at least are able to predict the
best events correctly. This greedy algorithm for event record
grouping is presented in Algorithm 1. We rank our predicted
nodes by score, and greedily select the highest scoring events,
whose enclosing regions (R) do not overlap.

Algorithm 1 Greedy event record grouping algorithm.

All tags and all regex matches on the page:
candidate fields = {span, . . .}
All tags on the page containing candidatef ields.
candidate tags = {span, . . .}

Score and collect candidates
possible events = ∅
for R in each candidate tag:
F = set(candidate fields inside R)
score = φ(F ,R,D)
if score > 0:

add (score,F ,R,D) to possible events

Greedily select highest scoring, non−overlapping tags
output = ∅
for event in sorted(possible events):

if event fields do not overlap with any fields in output:
add event to output

return output;

As another nod to efficiency, we implement φ by consid-
ering the parts independently, in terms of cost. Because
α(D), β(R), and γR(F) are simple to calculate and may
return zero scores, we calculate these parts first and skip
the relatively-more expensive independent field calculations
(γS(F)). Additionally, this reduces the number of field sets
that must be considered, lowering the overall cost of the
algorithm in practice.

An example HTML structure is shown in Figure 3. Nodes
D,E,F, and G are textual nodes, which contain fields. D
has been detected as a What field, E has been detected as a
When field, F has both a Where and a partial When (only a
relative date) and maybe a What field. Node G is an example
of a date that is nearby but irrelevant to the event itself.

Running on this example, our algorithm would walk through
the nodes, assigning φ scores to each node. Node D would
receive a score of zero, because it is missing required field
types (γR). Similarly, nodes E,F, and G would be removed
from consideration due to missing fields. The best selection
for this event would either be Node B or Node C, depending
on whether Node D is required to describe the event or if
Node F is considered sufficient What explanation. Because
of our joint field scoring, even if we do not apply a What
field classifier, Node A will receive a lower score since it has
an extra date field, which will lower its γS score and overall
score.

3.4.1 Deduplication
During development, our annotators reported seeing numer-
ous instances of duplicate events, particularly of high-profile
events that were advertised on many sites. Therefore, we

Figure 3: Example document structure handled by our algorithm.
The boxes labeled with letters represent nodes in the HTML
structure. Nodes D-G are textual nodes whose text is present.
The lines display the parent-child relationships in the tree.

applied an exact-string matching duplicate detection method
that ignored differences in capitalization, HTML tags and
whitespace as a baseline and found that it was difficult to im-
prove upon this baseline as our annotators no longer reported
finding duplicates in our sampling of events. In all follow-
ing analyses, we deduplicate all the extracted events using
this method. We leave using extracted date/time and place
information to perform a more domain-specific duplicate
detection for future work.

4. EXPERIMENTAL SETUP
We evaluate our technique for extracting events on the
ClueWeb122 corpus, which contains about 733 million pages.
We extract http://schema.org/event records as microdata
and rDFa in a first pass. This generates 145,000 unique web
pages with events, and about 900,000 events on those pages.
After deduplication, there are 430,000 unique events. Of
these unique events, we map Schema.org properties to our
three fields: What, Where, and When, and we are left with
217,000 complete events without any further processing.

We use incomplete events to train our field classifiers,
but we will later consider recall in respect to the number
of unique, complete Schema.org events, and we remove all
pages with Schema.org events from our processing of the
corpus moving forward, except for training data generation
purposes.

4.1 Collecting Judgments
During the development of our system, we collected 2,485
binary judgments for understanding precision of event pre-
dictions. Each of these judgments contains the ClueWeb12
id, the start and end offsets of the events (in bytes after the
WARC header), and a judgment: 1 if it is an event, and 0
otherwise.

For a large number of events in our best method, and in
our method comparsion, we evaluate at the field level as well
as at the event level, but only if the extraction actually is
an event. For these judgments, as well as the agreement
judgments, we turn to a crowdsourcing platform (Amazon

2http://lemurproject.org/clueweb12/

Mechanical Turk) to rapidly accumulate high-quality per-
field judgments. We paid annotators $0.05 for event-level
judgments and $0.10 for field-level judgments. We allowed
annotators to mark I can’t tell from the available information
for any field or event, and removed these from our evaluation
(Only 46 events in total out of the 2500).

For the fields, we asked annotators if they believed the
selected snippet answered the given question about the event.
As an example, we asked annotators to be picky about the
“When” field in particular: two of our options were No, it
only includes a date and No, it only includes a time.

4.2 Annotator Agreement

Figure 4: Agreement on Events and Fields

We calculated agreement on a set of thirty events randomly
selected from our best-performing technique. Results are
displayed in Figure 4. Because we asked our annotators
for reasons when a field was inaccurate, we have some data
on which the annotators agreed the field was incorrect, but
disagreed on the reason: for example, one reviewer said the
field was too short and the other said that they could not
tell.

Our agreement is relatively high (>80%) on all but the
“What” field, and our local reviewers found that agreement
tended to be correlated with quality. The relative field
performance here displays the ambiguity inherent in deciding
what should describe an event in comparison to the stricter
definitions of location and time.

4.3 Training Field Classifiers
Earlier, in Section 3.3.1, we discuss our approach to assigning
scores to fields, and our classification methods. We list the
features that we extract in Table 1, and we have already
mentioned that we were able to parse 430,000 unique events
from websites with Schema.org markup.

The question remains - how do we use this data as training
for What Classification and What-When-Where Classifica-
tion? Our first attempt to learn from this data involved a
cross-fold evaluation setup, where we split events by domain
into train, validate and test splits, extract features, and try
to predict the fields in our validate and test sets. We split by
domain here to better prepare ourselves for new data in our
cross-validation setup, to avoid overtfitting to head domains
that would have been present in all cross-validation sets.

While Schema.org gives us plenty of positive examples
for each field, we don’t necessarily have obvious negative
examples. In the end, we found that taking all the tags,
including other Schema.org properties, gave us the richest,
most accurate representation of our problem space. We want

our field classifiers to be able to select tags that actually
correspond to an event from all the other tags on a page that
has events. In early experiments, we found that using a single-
class classifier was a mistake - the best negative examples
for What include the positives for When and Where, as
judged by the way our What field initially predicted dates
and times and places. We moved to a multiclass setup, and
this seemed to improve on this problem. Even for our What
Classification setup, we emitted training, validation, and
test data. We used our validation data to tune the C and ε
parameters for LIBLINEAR and to choose between L1 and
L2 normalization.

Even with the care taken to select negative examples, our
cross-validation estimate of field classifier performance was
still extremely high (F1 > 75%) for our three fields, which
as we discuss later, is not the case when evaluated on pages
without Schema.org.

5. RESULTS

5.1 Evaluating our Field Prediction Methods

Table 2: Fields Classified by Method. (N,W) denote significant
improvements, where 99% of bootstrap samples of the target
method have higher precision than 99% of samples from the None
and What methods, respectively.

None What What-Where-When
Event 0.54 0.51 0.76 (N,W)
What 0.09 0.30 (N) 0.36 (N)
When 0.17 0.20 0.32
Where 0.32 0.32 0.66 (N,W)

Figure 5: Comparison of Precision of Field Detection Methods

A key part of our overall event extraction system is the
ability to assign meaningful independent scores to fields. We
introduced three field scoring systems in Section 3.3.1 based
on our baseline ability to detect Where/When aspects of
events through regular expressions, and combining these
baselines with classification.

In the No Classification system, we don’t use any training
data, and end up leveraging text near our Where/When fields
for our What predictions. In our What Classification system,
we use classification on only the What field, for which the
baseline is weakest, and in our What/When/Where Classi-
fication system, we combine our baseline and classification
approaches for all fields, leveraging the semi-supervision of
our Schema.org extracted fields to learn weights for features
as described earlier.

Table 3: Precision Levels used in evaluation.

V. High High Medium Low
Predicted 25,833 201,531 452,274 1,575,909

Increase 12% 93% 208% 725%
Judgments 155 567 482 491

Precision 0.92 0.85 0.65 0.55

In order to compare these methods, we first attempted to
use our semi-supervised data - the Schema.org events and
fields. Unfortunately, on such an event-focused dataset, all
of our methods performed well. We believe that because of
the format of microdata, and how it requires that each field
be represented succinctly and separately in its own tag, these
training instances were actually too simple. As a result, we
were not able to leverage the Schema.org data to compare
methods, and we had to create our own judgments.

We chose the top 30,000 pages by our document scoring
method: α(D), and ran our algorithm three times on each
page, once with each of our classification methods, and gener-
ated a pool of events from each. From each pool we sampled
100 random events (any attempt at a pairwise comparison
would not have accurately compared the different methods).

We used bootstrap sampling with 10,000 samples to obtain
99% confidence intervals for each of our evaluations. We mark
improvements where the 1% (worst-case) of the treatment
is greater than the 99% (best-case) of the baseline. The
improvements are marked in terms of the None baseline (N)
and the What baseline (W), and the raw, mean values are
presented in the Table 2.

5.2 Exploring Precision and Recall

Figure 6: Precision Evaluated at Recall Levels

As we discussed earlier, there were only about 217,000 unique,
complete events used in our semi-supervised approach for
training. We cannot evaluate our recall perfectly because we
simply do not know how many events are on the internet,
or even in ClueWeb12’s 700 million pages. Additionally, we
think the most interesting way to evaluate recall is to consider
a number of interesting recall points (precision categories)
for evaluation based on the ratio of events predicted to the
size of our semi-supervised input (Schema.org) events).

We consider a “Very High” precision category, chosen be-
cause it was a cutoff found to have over 90% precision. Our
“High” precision category is chosen because it represents
about a 1:1 prediction to training ratio. Our “Medium” preci-
sion category captures the case where we predict two events
for each training instance, and our “Low” precision category
contains the lowest score range in which we collected judg-
ments, at about a 7:1 prediction ratio. These pseudo-recall
levels are listed in Table 3.

In Figure 6, precision for each component of the event
is illustrated. As overall precision drops, we can see how
the weakest part of our detection is still the Event title, or
the What field. Intuitively, this makes sense, as it is less
structured and even our annotators had trouble agreeing on
What field with respect to the other fields. Another finding
that’s interesting here is that even though the field precision
degrades rapidly, (partly because it is conditioned on the
event being correct) our event precision is significantly higher,
particularly in the “Low” precision level. This suggests that
even our noisy field detection has value, particularly to a
selection algorithm like ours.

5.3 Supervised Evaluation
As a qualitative observation, when we had false-positives for
event classification, they were often near-misses, in the form
of album releases, band histories, obituaries, or biographies.
They tended to be rich in field information, but from the
wrong domain. In general, our technique introduced some
false positives as the domain broadened from the focus on
commercial music events of the Schema.org events.

Since we had collected a large number of judgments, we de-
cided to briefly explore a human-supervised approach. In all
other sections, we discuss distant supervision results, where
we had no gold-truth human assigned labels, but only the
silver-truth of the Schema.org data. This evaluation serves
two purposes: (1) determining whether our impression of
easily-detected domain mismatches is true, and (2) evaluating
the amount of effort needed to apply a supervised approach
to this problem.

Since we were interested in understanding annotator ef-
fort, we only used our 1100 Mechanical Turk annotations for
this part, as they were automatically timed. We break our
judgments into two parts, taking 800 events from medium to
very-high precision, as our training and validation data, and
300 events in our low-precision bracket (original Precision
of 0.55). We build a simple unigram classifier with 10,000
hashed term features as well as document, region, and indi-
vidual field scores for the best field of each kind from those
predictions, again using LIBLINEAR.

Figure 7: Supervised Event Prediction of Low-precision data
based on other judgments. On the left, we have the training/val-
idation data, and their precision represented (Very High, High,
and Medium), and on the right, we have the test data, and its
original precision (Low) and its new precision under supervision
(Supervised).

This classifier works extremely well over our 300 evaluation
events from the low range, boosting the precision from 0.55
to 0.72, with a 92% relative recall (the new classifier rejected
another 8% of the 300 events). This experiment is displayed

in Figure 7, where the blue bars correspond to the training
data, the red bar with the original performance of the low-
precision events, and the green bar with the supervised
precision of the low-precision events.

This experiment supports our claim that a large amount of
false-positives from our technique are simple to eliminate with
minimal training data and annotation effort (˜30 total hours
of annotator time for the 1100 train/validate/evaluation
judgments used).

5.4 Geographic Evaluation
We use a publicly-available geocoding and address API3 to
convert our extracted “Where” fields into full street addresses,
and latitude/longitude information. The street addresses are
used to evaluate our performance on future retrieval tasks,
and the latitude and longitude pairs are used to generate
maps to better understand our coverage and that of the
Schema.org data.

5.4.1 City Coverage around the World

Table 4: Retrieval Metrics for 200 random cities.

MRR@5 P@1 P@2 P@3 P@4 P@5
0.78 0.71 0.70 0.69 0.70 0.70

The TREC Contextual Suggestion Track considers the task of
recommending venues or destinations to users in new cities [5].
In this work, we briefly evaluate the suitability of our dataset
to be applied to a similar task: the task of recommending
events to users based on their location. Because the work
we present is not about the recommendation task itself, but
rather the extraction of events, we evaluate our ability to
provide event coverage in a random city.

We group our events by city, and select events from 200
cities at random. We then judge, using Amazon Mechanical
Turk, the 5 highest scoring events from each city. We evaluate
as a retrieval task, where our query is the random city, and
our ranking function for now is our confidence in the event
prediction. The mean reciprocal rank (MRR) of finding an
event is 0.78 on this data: on average there is an event at
either rank 1 or rank 2. Our event precision at 1 is 0.71. Full
results are listed in Table 4. The precision numbers here
seem flat because there tend to be five or so valid events
for each location. It is nice to see this consistency, because
it suggests that our system is able to find many events for
randomly selected locations.

5.4.2 Geographic Display
In Figure 8, we display a small world map where our events
are plotted to understand our international coverage. Since
the dataset we used, ClueWeb12 is biased toward English
pages, it is understandable that the events we have extracted
are mostly found in the United States, and north-western
Europe. There is also some token coverage in other parts of
the world, including India and Australia, but we focus on
areas that we expect to have good coverage based on the
ClueWeb12 English-speaking bias.

In Figure 9, you can see our events plotted on a US Map
in two colors: green for high and very-high confidence P >=
0.65, and yellow for 0.55 < P < 0.65. The blue dots are events
parsed from Schema.org pages. The key takeaway from this

3https://developers.google.com/maps

Figure 8: Events across the world. Note that we have good
coverage of countries where English is the dominant language,
in a reflection of our corpus, ClueWeb12.

Figure 9: Events within the United States. Blue data points
indicate Schema.org data, Green represents high confidence
(P=0.65..0.85+), and Yellow represents low to medium con-
fidence points (P=0.55..0.65). All points have more than 5
unique events, and are logarithmically scaled according to
weight.

map is that Schema.org events are definitely more prevalent
in large cities, specifically in New York, Los Angeles, and
Chicago, and visually, our technique does quite a good job of
expanding coverage geographically. Note that we only plot a
point if there are more than five unique event occurrences at
that location, and we have restricted our sampled precision
to be above 0.55, and there are many more events at the
larger dots, as their size is logarithmically scaled.

6. CONCLUSION
In this work, we introduce a new task inspired by the TREC
Contextual Suggestion Track and the increasing population
of mobile users: to retrieve and recommend events that users
might want to attend. Because we are particularly interested
in local events, our work focuses on the identification and
extraction of events on the open internet.

We show that using semantic web technologies, and specif-
ically Schema.org microdata to collect distant supervision
data can be useful for training semi-supervised approaches to
extraction problems like ours. This setup has the advantage
that as more organizations adopt such technologies, the per-
formance of our extractions will increase over time without
any additional labeling effort.

We propose a novel model of event extraction based on
independent field scoring and a greedy algorithm for group-
ing these fields into complete event records, with confidence
scores assigned to them. Our features for field classification

allow us to combine elements commonly seen in region ex-
traction approaches with both information retrieval-based
and linguistically-inspired features. As the proposed model
depends heavily upon the ability to assign individual field
scores, we evaluate a number of score assignment methods,
and find that classification that learns from using the distant
supervision of the Schema.org data is significantly beneficial.

7. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intel-
ligent Information Retrieval. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of the sponsor.

8. REFERENCES
[1] M. D. Adelfio and H. Samet. Schema extraction for tabular

data on the web. VLDB’13, 6(6):421–432, 2013.

[2] H. Becker. Identification and characterization of events in
social media. PhD thesis, Columbia University, 2011.

[3] C. Bizer, K. Eckert, R. Meusel, H. Mühleisen,
M. Schuhmacher, and J. Völker. Deployment of rDFa,
microdata, and microformats on the web–A quantitative
analysis. ISWC, pages 17–32, 2013.

[4] M. J. Cafarella, A. Halevy, and J. Madhavan. Structured
data on the web. CACM’11, 54(2):72–79, 2011.

[5] A. Dean-Hall, C. L. Clarke, J. Kamps, P. Thomas,
N. Simone, and E. Voorhees. Overview of the trec 2013
contextual suggestion track. Technical report, DTIC
Document, 2013.

[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. Liblinear: A library for large linear classification. The
Journal of Machine Learning Research, 9:1871–1874, 2008.

[7] A. L. Gentile, Z. Zhang, I. Augenstein, and F. Ciravegna.
Unsupervised wrapper induction using linked data. In
K-CAP ’13, pages 41–48, New York, NY, USA, 2013. ACM.

[8] A. L. Gentile, Z. Zhang, and F. Ciravegna. Self training
wrapper induction with linked data. In Text, Speech and
Dialogue, pages 285–292. Springer, 2014.

[9] R. Gupta and S. Sarawagi. Answering table augmentation
queries from unstructured lists on the web. VLDB’09,
2(1):289–300, 2009.

[10] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. Dom-based
content extraction of html documents. In WWW’03, pages
207–214. ACM, 2003.

[11] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
Yago2: a spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[12] J. L. Hong, E.-G. Siew, and S. Egerton. Information
extraction for search engines using fast heuristic techniques.
Data & Knowledge Engineering, 69(2):169–196, 2010.

[13] F. Jelinek and R. L. Mercer. Interpolated estimation of
markov source parameters from sparse data. In Proceedings
of the Workshop on Pattern Recognition in Practice, 1980.

[14] M. Kayaalp, T. Ozyer, and S. Ozyer. A collaborative and
content based event recommendation system integrated with
data collection scrapers and services at a social networking
site. In ASONAM’09, pages 113–118. IEEE, 2009.

[15] E. Kuzey, J. Vreeken, and G. Weikum. A fresh look on
knowledge bases: Distilling named events from news. In
CIKM’14, pages 1689–1698. ACM, 2014.

[16] D. Lagun, A. Sud, R. W. White, P. Bailey, and G. Buscher.
Explicit feedback in local search tasks. In SIGIR’13, pages
1065–1068. ACM, 2013.

[17] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
VLDB’10, 3(1-2):1338–1347, 2010.

[18] R. Manjula and A. Chilambuchelvan. Extracting templates
from web pages. In Green Computing, Communication and
Conservation of Energy (ICGCE), 2013 International
Conference on, pages 788–791. IEEE, 2013.

[19] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. The Stanford CoreNLP natural
language processing toolkit. In ACL, pages 55–60, 2014.

[20] D. Metzler, C. Cai, and E. Hovy. Structured event retrieval
over microblog archives. In ACL’12, pages 646–655.
Association for Computational Linguistics, 2012.

[21] H. Mühleisen and C. Bizer. Web data commons-extracting
structured data from two large web corpora. LDOW, 937,
2012.

[22] P. Petrovski, V. Bryl, and C. Bizer. Learning regular
expressions for the extraction of product attributes from
e-commerce microdata. 2014.

[23] J. Pomikálek. Removing boilerplate and duplicate content
from web corpora. Disertacnı práce, Masarykova univerzita,
Fakulta informatiky, 2011.

[24] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR’98, pages
275–281. ACM, 1998.

[25] J. Pustejovsky, P. Hanks, R. Sauri, A. See, R. Gaizauskas,
A. Setzer, D. Radev, B. Sundheim, D. Day, L. Ferro, et al.
The timebank corpus. In Corpus linguistics, volume 2003,
page 40, 2003.

[26] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes
twitter users: real-time event detection by social sensors. In
Proceedings of the 19th international conference on World
wide web, pages 851–860. ACM, 2010.

[27] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of
the linked data best practices in different topical domains.
ISWC, pages 245–260, 2014.

[28] H. Sleiman and R. Corchuelo. Trinity: on using trinary trees
for unsupervised web data extraction. 2013.

[29] H. A. Sleiman and R. Corchuelo. A survey on region
extractors from web documents. Knowledge and Data
Engineering, IEEE, 25(9):1960–1981, 2013.

[30] H. A. Sleiman and R. Corchuelo. Tex: An efficient and
effective unsupervised web information extractor.
Knowledge-Based Systems, 39:109–123, 2013.

[31] D. A. Smith. Detecting and browsing events in unstructured
text. In SIGIR’02, pages 73–80. ACM, 2002.

[32] D. A. Smith. Detecting events with date and place
information in unstructured text. In Proceedings of the 2nd
ACM/IEEE-CS joint conference on Digital libraries, pages
191–196. ACM, 2002.

[33] J. Strötgen and M. Gertz. Heideltime: High quality
rule-based extraction and normalization of temporal
expressions. In Workshop on Semantic Evaluation, ACL,
pages 321–324, 2010.

[34] W. Thamviset and S. Wongthanavasu. Information
extraction for deep web using repetitive subject pattern.
WWW’13, pages 1–31, 2013.

[35] W. Thamviset and S. Wongthanavasu. Bottom-up region
extractor for semi-structured web pages. In ICSEC’14, pages
284–289. IEEE, 2014.

[36] K. Watanabe, M. Ochi, M. Okabe, and R. Onai. Jasmine: a
real-time local-event detection system based on geolocation
information propagated to microblogs. In CIKM’11, pages
2541–2544. ACM, 2011.

[37] W. J. Welch. Algorithmic complexity: three np-hard
problems in computational statistics. Journal of Statistical
Computation and Simulation, 15(1):17–25, 1982.

[38] Z. Yu. High accuracy postal address extraction from web
pages. Master’s thesis, Dalhousie University, Halifax, Nova
Scotia, 2007.

[39] Z. Zhang. Towards efficient and effective semantic table
interpretation. In ISWC’14, pages 487–502. Springer, 2014.

