
CS631 - Advanced Programming in the UNIX Environment Slide 1

CS631 - Advanced Programming in the UNIX

Environment

–

File Systems, System Data Files, Time & Date

Department of Computer Science

Stevens Institute of Technology

Jan Schaumann

jschauma@stevens.edu

https://stevens.netmeister.org/631/

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 2

File Systems

a disk can be divided into logical partitions

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 3

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 4

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

each cylinder group contains a list of inodes (i-list) as well as the

actual directory- and data blocks

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 5

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

each cylinder group contains a list of inodes (i-list) as well as the

actual directory- and data blocks

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 6

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

each cylinder group contains a list of inodes (i-list) as well as the

actual directory- and data blocks

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 7

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

each cylinder group contains a list of inodes (i-list) as well as the

actual directory- and data blocks

a directory entry is really just a hard link mapping a “filename” to an

inode

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 8

File Systems

a disk can be divided into logical partitions

each logical partition may be further divided into file systems

containing cylinder groups

each cylinder group contains a list of inodes (i-list) as well as the

actual directory- and data blocks

a directory entry is really just a hard link mapping a “filename” to an

inode

you can have many such mappings to the same file

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 9

Directories

directories are special ”files” containing hardlinks

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 10

Directories

directories are special ”files” containing hardlinks

each directory contains at least two entries:

. (this directory)

.. (the parent directory)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 11

Directories

directories are special ”files” containing hardlinks

each directory contains at least two entries:

. (this directory)

.. (the parent directory)

the link count (st nlink) of a directory is at least 2

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 12

Inodes

the inode contains most of the information found in the stat structure.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 13

Inodes

the inode contains most of the information found in the stat structure.

every inode has a link count (st nlink): it shows how many “things”

point to this inode. Only if this link count is 0 (and no process has the

file open) are the data blocks freed.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 14

Inodes

the inode contains most of the information found in the stat structure.

every inode has a link count (st nlink): it shows how many “things”

point to this inode. Only if this link count is 0 (and no process has the

file open) are the data blocks freed.

inode number in a directory entry must point to an inode on the same

file system (no hardlinks across filesystems)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 15

Inodes

the inode contains most of the information found in the stat structure.

every inode has a link count (st nlink): it shows how many “things”

point to this inode. Only if this link count is 0 (and no process has the

file open) are the data blocks freed.

inode number in a directory entry must point to an inode on the same

file system (no hardlinks across filesystems)

to move a file within a single filesystem, we can just ”move” the

directory entry (actually done by creating a new entry, and deleting

the old one).

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 16

Inodes

the inode contains most of the information found in the stat structure.

every inode has a link count (st nlink): it shows how many “things”

point to this inode. Only if this link count is 0 (and no process has the

file open) are the data blocks freed.

inode number in a directory entry must point to an inode on the same

file system (no hardlinks across filesystems)

to move a file within a single filesystem, we can just ”move” the

directory entry (actually done by creating a new entry, and deleting

the old one).

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 17

Inodes

the inode contains most of the information found in the stat structure.

every inode has a link count (st nlink): it shows how many “things”

point to this inode. Only if this link count is 0 (and no process has the

file open) are the data blocks freed.

inode number in a directory entry must point to an inode on the same

file system (no hardlinks across filesystems)

to move a file within a single filesystem, we can just ”move” the

directory entry (actually done by creating a new entry, and deleting

the old one).

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 18

link(2)

#include <unistd.h>

int link(const char *name1, const char *name2);

Returns: 0 if OK, -1 on error

Creates a link to an existing file (hard link).

POSIX.1 allows links to cross filesystems, most implementations

(SVR4, BSD) don’t.

only uid(0) can create links to directories (loops in filesystem are bad)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 19

link(2) and unlink(2)

#include <unistd.h>

int link(const char *name1, const char *name2);

Returns: 0 if OK, -1 on error

Creates a link to an existing file (hard link).

POSIX.1 allows links to cross filesystems, most implementations

(SVR4, BSD) don’t.

only uid(0) can create links to directories (loops in filesystem are bad)

#include <unistd.h>

int unlink(const char *path);

Returns: 0 if OK, -1 on error

removes directory entry and decrements link count of file

if file link count == 0, free data blocks associated with file (...unless

processes have the file open)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 20

link(2) and unlink(2)

$ cc -Wall wait-unlink.c

$./a.out

$ df .

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 21

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 22

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 23

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

must have w+x perms for the directories containing old/newname

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 24

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

must have w+x perms for the directories containing old/newname

If oldname refers to a directory:

if newname exists and is an empty directory (contains only . and ..), it

is removed; oldname is renamed newname

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 25

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

must have w+x perms for the directories containing old/newname

If oldname refers to a directory:

if newname exists and is an empty directory (contains only . and ..), it

is removed; oldname is renamed newname

if newname exists and is a file, an error results

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 26

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

must have w+x perms for the directories containing old/newname

If oldname refers to a directory:

if newname exists and is an empty directory (contains only . and ..), it

is removed; oldname is renamed newname

if newname exists and is a file, an error results

if oldname is a prefix of newname an error results

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 27

rename(2)

#include <stdio.h>

int rename(const char *from, const char *to);

Returns: 0 if OK, -1 on error

If oldname refers to a file:

if newname exists and it is not a directory, it’s removed and oldname

is renamed newname

if newname exists and it is a directory, an error results

must have w+x perms for the directories containing old/newname

If oldname refers to a directory:

if newname exists and is an empty directory (contains only . and ..), it

is removed; oldname is renamed newname

if newname exists and is a file, an error results

if oldname is a prefix of newname an error results

must have w+x perms for the directories containing old/newname

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 28

Symbolic Links

#include <unistd.h>

int symlink(const char *name1, const char *name2);

Returns: 0 if OK, -1 on error

file whose ”data” is a path to another file

anyone can create symlinks to directories or files

certain functions dereference the link, others operate on the link

How do we get the contents of a symlink? open(2) and read(2)?

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 29

Symbolic Links

#include <unistd.h>

int symlink(const char *name1, const char *name2);

Returns: 0 if OK, -1 on error

file whose ”data” is a path to another file

anyone can create symlinks to directories or files

certain functions dereference the link, others operate on the link

#include <unistd.h>

int readlink(const char *path, char *buf, size t bufsize);

Returns: number of bytes placed into buffer if OK, -1 on error

This function combines the actions of open, read, and close.

Note: buf is not NUL terminated.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 30

File Times

#include <sys/types.h>

int utimes(const char *path, const struct timeval times[2]);
int lutimes(const char *path, const struct timeval times[2]);
int futimes(int fd, const struct timeval times[2]);

Returns: 0 if OK, -1 on error

If times is NULL, access time and modification time are set to the current

time (must be owner of file or have write permission). If times is

non-NULL, then times are set according to the timeval struct array.

For this, you must be the owner of the file (write permission not enough).

Note that st ctime is set to the current time in both cases.

For the effect of various functions on the access, modification and

changes-status times see Stevens, p. 117.

Note: some systems implement lutimes(3) (library call) via utimes(2)

syscalls.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 31

mkdir(2) and rmdir(2)

#include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char *path, mode t mode);

Returns: 0 if OK, -1 on error

Creates a new, empty (except for . and .. entries) directory. Access
permissions specified by mode and restricted by the umask(2) of the
calling process.

#include <unistd.h>

int rmdir(const char *path);

Returns: 0 if OK, -1 on error

If the link count is 0 (after this call), and no other process has the

directory open, directory is removed. Directory must be empty (only .

and .. remaining)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 32

Reading Directories

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *filename);

Returns: pointer if OK, NULL on error

struct dirent *readdir(DIR *dp);

Returns: pointer if OK, NULL at end of dir or on error

void rewinddir(DIR *dp);

int closedir(DIR *dp);

Returns: 0 if OK, -1 on error

read by anyone with read permission on the directory

format of directory is implementation dependent (always use readdir

and friends)

opendir, readdir and closedir should be familiar from our small ls

clone. rewinddir resets an open directory to the beginning so readdir

will again return the first entry.

For directory traversal, consider fts(3) (not available on all UNIX

versions).

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 33

Moving around directories

#include <unistd.h>

char *getcwd(char *buf, size t size);

Returns: buf if OK, NULL on error

Get the kernel’s idea of our process’s current working directory.

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fd);

Returns: 0 if OK, -1 on error

Allows a process to change its current working directory. Note that chdir

and fchdir affect only the current process.

$ cc -Wall cd.c

$./a.out /tmp

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 34

Password File

Called a user database by POSIX and usually found in /etc/passwd, the

password file contains the following fields:

Description struct passwd member POSIX.1

username char *pw name x

hashed passwd char *pw passwd

numerical user id uid t pw uid x

numerical group id gid t pw gid x

comment field char *pw gecos

initial working directory char *pw dir x

initial shell char *pw shell x

Password field is a one-way hash of the users password.

Some fields can be empty:

password empty implies no password

shell empty implies /bin/sh

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 35

Password File

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwuid(uid t uid);

struct passwd *getpwnam(const char *name);

Returns: pointer if OK, NULL on error

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwent(void);

Returns: pointer if OK, NULL on error

void setpwent(void);

void endpwent(void);

getpwent returns next password entry in file each time it’s called, no

order

setpwent rewinds to ”beginning” of entries

endpwent closes the file(s)

See also: getspnam(3)/getspent(3) (where available)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 36

Group File

Called a group database by POSIX and usually found in /etc/group, the

group file contains the following fields:

Description struct group member POSIX.1

groupname char *gr name x

hashed passwd char *gr passwd

numerical group id uid t gr uid x

array of pointers to user names char **gr mem x

The gr mem array is terminated by a NULL pointer.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 37

Group File

#include <sys/types.h>

#include <grp.h>

struct group *getgrgid(gid t gid);

struct group *getgrnam(const char *name);

Returns: pointer if OK, NULL on error

These allow us to look up an entry given a user’s group name or
numerical GID. What if we need to go through the group file entry by
entry? Nothing in POSIX.1, but SVR4 and BSD give us:

#include <sys/types.h>

#include <grp.h>

struct group *getgrent(void);

Returns: pointer if OK, NULL on error

void setgrent(void);

void endgrent(void);

getgrent returns next group entry in file each time it’s called, no order

setgrent rewinds to ”beginning” of entries

endgrent closes the file(s)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 38

Supplementary Groups and other data files

#include <sys/types.h>

#include <unistd.h>

int getgroups(int gidsetsize, gid t *grouplist);

Returns: returns number of suppl. groups if OK, -1 on error

Note: if gidsetsize == 0, getgroups(2) returns number of groups

without modifying grouplist.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 39

Other system databases

Similar routines as for password/group for accessing system data files:

Description Data file Header Structure Additional lookup functions

hosts /etc/hosts <netbdb.h> hostent gethostbyname

gethostbyaddr

networks /etc/networks <netbdb.h> netent genetbyname

getnetbyaddr

protocols /etc/protocols <netbdb.h> protoent getprotobyname

getprotobynumber

services /etc/services <netbdb.h> servent getservbyname

getservbyport

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 40

System Identification

#include <sys/utsname.h>

int uname(struct utsname *name);

Returns: nonnegative value if OK, -1 on error

Pass a pointer to a utsname struct. This struct contains fields like

opsys name, version, release, architecture, etc.

This function used by the uname(1) command (try uname -a)

Not that the size of the fields in the utsname struct may not be large

enough to id a host on a network

To get just a hostname that will identify you on a TCP/IP network, use the

Berkeley-dervied:

#include <unistd.h>

int gethostname(char *name, int namelen);

Returns: 0 if OK, -1 on error

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 41

Time and Date

#include <time.h>

time t time(time t *tloc);

Returns: value of time if OK, -1 on error

Time is kept in UTC

Time conversions (timezone, daylight savings time) handled

”automatically”

Time and date kept in a single quantity (time t)

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 42

Time and Date

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 43

Time and Date

We can break this time t value into its components with either of the
following:

#include <time.h>

struct tm *gmtime(const time t *calptr);

struct tm *localtime(const time t *calptr);
Returns: pointer to broken down time

localtime(3) takes into account daylight savings time and the TZ

environment variable.

#include <time.h>

time t mktime(struct tm *tmptr);

Returns: calendar time if OK, -1 on error

The mktime(3) function operates in the reverse direction.

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 44

Time and Date

To output human readable results, use:

#include <time.h>

char *asctime(const struct tm *tmptr);

char *ctime(const struct tm *tmptr);

Returns: pointer to NULL terminated string

Lastly, there is a printf(3) like function for times:

#include <time.h>

size t strftime(char *buf, size t maxsize, const char *restricted format, const struct tm *timeptr);

Returns: number of characters stored in array if room, else 0

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

CS631 - Advanced Programming in the UNIX Environment Slide 45

Homework

Reading:

Stevens, Chapter 4 and 6

Falsehoods Programmers believe about time: http://is.gd/yFSYR0

Think about code. You should now be able to implement:

ln(1), mv(1), rm(1), rmdir(1), stat(1)

date(1), id(1), touch(1), uname(1)

Other:

work on your midterm project!

Lecture 04: File Systems, System Data Files, Time & Date September 23, 2019

