Next Article in Journal
State Selection and Cost Estimation for Deep Reinforcement Learning-Based Real-Time Control of Urban Drainage System
Next Article in Special Issue
Gloeotrichia cf. natans (Cyanobacteria) in the Continuous Permafrost Zone of Buotama River, Lena Pillars Nature Park, in Yakutia (Russia)
Previous Article in Journal
Mapping Specific Constituents of an Ochre-Coloured Watercourse Based on In Situ and Airborne Hyperspectral Remote Sensing Data
Previous Article in Special Issue
Influence of Selected Environmental Factors on Diatom β Diversity (Bacillariophyta) and the Value of Diatom Indices and Sampling Issues
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic

1
Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba Khoushi Ave., Haifa 3498838, Israel
2
Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Science (IBPC SB RAS), Lenin Av. 41, Yakutsk 677980, Russia
3
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (IBIW RAS), Borok 152742, Russia
*
Author to whom correspondence should be addressed.
Water 2023, 15(8), 1533; https://doi.org/10.3390/w15081533
Submission received: 30 March 2023 / Revised: 11 April 2023 / Accepted: 12 April 2023 / Published: 13 April 2023
(This article belongs to the Special Issue Advances and Challenges of Lake Biodiversity)

Abstract

:
A total of 385 species of diatoms were identified in the phytoplankton of 14 small Arctic tundra water bodies in the vicinity of Tiksi Bay. We found that the species composition of phytoplankton in each lake is strictly individual. The ecological preferences of diatom species in the studied water bodies were determined for more than 90% of the list. Indicator characteristics show a certain response of the species composition of phytoplankton to changes in salinity and organic pollution. Several regularities were revealed in the spatial distribution of diatom communities in the study area in connection with the physicochemical parameters of their habitat, the height of the lake, its remoteness from the seacoast, and belonging to a specific watershed. Statistical mapping of the data on the diversity of communities and the chemical properties of water revealed a strong reaction of the communities of water bodies to point one-time anthropogenic pollution, and also made it possible to assume the influence of summer, northeast winds on the species composition as a climatic factor. The results of the study are important for developing the foundations for monitoring the non-impact (background), ecologically sensitive territory of the Arctic. They are highly relevant for assessing the consequences of local anthropogenic impacts and climate change in the future. Spatial ecological mapping in conjunction with bioindication can be used as a new method for identifying natural and non-natural stress factors.

1. Introduction

Diatoms are recognized as one of the most diverse groups that are used in the assessment of the ecological state of water bodies [1,2,3] under the European Framework Directive [4], because their great diversity and our extensive knowledge of the ecology [5] allow for the use of their bio-indicator properties [6,7]. The aquatic ecosystems of the Eurasian High Arctic are still insufficiently studied but have recently attracted more and more attention due to the development of Arctic resources. Diatoms were studied on the islands in the Arctic Ocean [8,9,10], Eurasian northern coast of the Arctic Ocean [11,12], Chukotka [13,14,15], and the continental part of Yakutia [16]. Our studies of aquatic communities in northern Yakutia were conducted to assess the impact of climatic and anthropogenic factors on them [17,18,19,20,21]. The study of the Arctic environment is important in connection with permafrost properties under the phenomenon of global climate change [22,23].
Particular attention in this regard is paid to communities of water bodies in areas adjacent to protected areas, but where there is not only a gradient of climatic but also anthropogenic factors. If reserves represent the background diversity of the territory where the reserve is located, then in nearby land areas subject to anthropogenic impacts, one can not only trace the change in species composition, but also assess the degree of vulnerability of biodiversity of the entire territory when compared with a protected area.
Water bodies around the coast of Laptev Sea in northern Eurasia attract the attention of researchers because it is an area that connects two major transport arteries, the Lena River and the Northern Sea Route, and, as a result experiences climatic and anthropogenic impacts. Part of the coast and the delta of the Lena River is preserved as the Lena Delta Wildlife Reserve. Both the reserve and adjacent territories are located beyond the Arctic Circle in a zone of that continuously exhibits permafrost soils. Algological studies were initiated almost one hundred years ago of this area, including the lower reaches of the Lena River, its delta, the vast water area of the Laptev Sea, tundra reservoirs of the mainland (spurs of the Kharaulakh Range), and the New Siberian Islands. The latest species list of the algal flora in the region, including the Lena Delta Wildlife Reserve and the adjusted area, was published as a database on the GBIF.org portal [19]. In accordance with this, the diatom flora in the region includes information on 413 taxa with a rank below the genus prior to our investigation.
Previously, it was shown that the species composition and diversity of algae in Arctic water bodies is influenced by several regional features, such as the area of the water body, the direction of prevailing winds, water temperature, salinity, and pH [11,24].
The aim of this study is to determine the species composition of diatoms and environmental variables in 14 small, fresh water bodies in the Tiksi region to identify indicator species and analyze their spatial distribution, to determine the environmental factors affecting the diversity of this group of hydrobionts in the studied water bodies, and to compare the two species lists: present and the Lena Delta Wildlife Reserve.

2. Materials and Methods

2.1. Description of Study Site

The study area is located north of the Arctic Circle, 50 km southeast of the border of the Lena Delta Wildlife Reserve. The territory is located on the northern slope of the Primorsky Ridge, which is the eastern spur of the Kharaulakh Range of the Verkhoyansk Mountain system and forms a section of the coast of the Laptev Sea in the Arctic Ocean (Tiksi Bay and Neelov Gulf). The maximum altitude of the Primorsky Ridge is 400 m above sea level. The northeastern slope of the ridge mainly consists of shales, sandstones, limestones, and partly effusive rocks [25], which, according to some data, were formed as a result of catastrophic outbursts of a glacier-dammed lake in the late Pleistocene–early Holocene [26,27]. The studied area belongs to the tundra and mountain tundra, natural zones. The climate is maritime polar, the average annual air temperature is −9–11 °C [28], and the average frost-free period is 45 days [29]. The depth of seasonal thawing of permafrost soils is 0.2–1.2 m [30]. The average annual precipitation reaches 212 mm, of which the bulk falls from June to August. The phenomena of a polar day in summer and a polar night in winter are characteristic of the area. Strong winds are frequent; however, July (the month when our observations were performed) is characterized by the lowest-average hourly wind speed of the year, which is 15.5 km/h in the southeast direction (from the sea to the mainland). Due to limited drainage due to the reduced thickness of the seasonally thawed permafrost layer, the territory is characterized by an abundance of small tundra water bodies [30]. Our work was conducted on 14 different water bodies, which were shallow tundra lakes, small water bodies, and a hollow in the swampy tundra (mochezina) that has never been studied before (Figure 1, Table 1).

2.2. Sampling

Phytoplankton sampling was conducted between 3 and 7 July 2021. Phytoplankton samples were obtained with Apstein’s net SEFAR NITEX fabric, with a mesh diameter of 15 µm. One sample from lake 10 was obtained by washing off the biofilm from the surface of a submerged rock using a brush. Fixation with 4% neutral formaldehyde solution was performed immediately after collection. The temperature of the water and the morphometric parameters of each lake were determined during the collection of the phytoplankton. The coordinates and altitude of the sampling stations were defined by a Garmin eTrex GPS navigator (Table 1). Water samples of 1 L were collected from each lake for the chemical analysis. All samples were transported to perform determinations at the Institute for Biological Problems of Cryolithozone SB RAS, Yakutsk.

2.3. Water Chemistry Analysis

Chemical analyses of water samples were performed following standard methods [31]. Water color was determined using a photometric method. The pH was measured using a potentiometric method. Oxygen concentration was measured using a titration method with iodometric determination. Water salinity (TDS) was calculated as the sum of ions using the following methods: turbidimetry for sulfate anions; flame spectrophotometry for potassium and sodium cations; mercurimetric titration for chloride ions; and titration for calcium, magnesium, and bicarbonate ions. A photometric method was applied to determine nutrients’ concentrations. Nessler reagent, Griess reagent, salicylic acid, ammonium molybdate, and sulfosalicylic acid were used for the measurements of ammonium ion, nitrite ion, nitrate ion, phosphate ions, and total iron, respectively. A combined reagent composed of ammonium molybdate and ascorbic acid was used to determine the total phosphorus content. A titration method with iodometric determination was used to measure biological oxygen demand (BOD5). A photometric method was applied to determine the chemical oxygen demand (COD). The content of manganese and copper was determined by atomic absorption spectrometry with electrothermal vaporization. For the quality control of the analysis, the method provides repeatability limit coefficients (R) that correspond to the following values: R = 3 (pH, O2, HCO3), R = 4 (hardness, SO4), R = 8 (Ca, Mg, Cl), R = 12 (Na, P tot), R = 7 (K), R = 15 (NH4), R = 14 (NO3), R = 10 (color), R = 13 (BOD), R = 25 (COD), R = 27 (Fe tot), R = 31 (Mn), and R = 28 (Cu). The measurement (Xmean) was taken as the arithmetic mean of two parallel detections (X1, X2), for which the following condition was satisfied: ( X 1 X 2 ) R for pH;   ( X 1 X 2 )   ( R × ( X 1 + X 2 ) 200 for dissolved oxygen (O2), hardness, calcium (Ca), bicarbonates (HCO3), sulfates (SO4), ammonium (NH4), color, and BOD; ( X 1 X 2 ) 0.01 × R × X mean for magnesium (Mg), sodium (Na), potassium (K), chlorides (Cl), nitrates (NO3), total phosphorus (P tot), COD, iron total (Fe tot), manganese (Mn), and copper (Cu).

2.4. Diatom Analysis

Diatom shells were freed from organic matter by burning with 30% hydrogen peroxide followed by a 6 h thermal treatment in a thermostat at 85 °C [32]. The preparations were examined in a JEOL JSM-6510 LV scanning electron microscope (JEOL Ltd.; Tokyo, Japan). Handbooks and individual articles were used for species determinations [15,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]. The species names were unified according to the modern system using algaebase.org [55].

2.5. Bioindicators and Statistical Analysis

To determine the environmental factors affecting the diversity of diatoms in the studied water bodies, various approaches were used. Bioindicator analysis was performed according to [56], with species-specific ecological preferences of the revealed diatoms [57,58]. Statistical maps of the environmental variables and bioindicators were constructed as the network analysis in JASP (significant only) using the botnet package in statistic R of [59] to follow the comparison of their distribution. The statistical analysis of species and environmental variables’ relationships was performed with the CANOCO Program 4.5 [60].

3. Results

3.1. Water Chemistry

Chemical data were obtained for 11 of the 14 studied water bodies and are presented in Appendix A Table A1. The water temperature of most studied lakes varied from 13.3° to 16.7 °C, excluding lake 4, where the water warmed up to 20.4 °C. Water pH was neutral (pH 6.65–7.51). Suspended matter was low. Dissolved oxygen content varied insignificantly from 8.7 to 10.47 mg L−1. The oxygen regime was favorable. The water from the lakes was fresh, with low and mild salinity levels, in terms of hardness—soft or medium-hard. The water of the studied lakes was of the hydrocarbonate-class calcium group according to major ionic constituents, except for lakes 1 and 4, where the water was of the sulfate-class calcium group. A high concentration of total iron was detected in the lakes. Low nitrate nitrogen and total phosphorus content were defined in the water of the studied lakes; mineral phosphorus, nitrite nitrogen, and silica also had negligible concentrations. The color of the water for most of the lakes was reduced; an increase in this variable only occurred for lake 4. The easy-to-oxidized organic substances (as BOD) for lakes 1, 4, 7, 10, and 11 were characterized by high values, whereas this variable was low in the other studied lakes. The content of hard-to-oxidize organic substances, estimated (as COD) in lakes 1, 2, and 4, was low. For the rest of the lakes, an increased COD value was noted. Technogenic pollutants were characterized by their low content: the concentration of oil products and phenols was below the detection limit of the analysis and therefore was not included in Appendix A Table A1. Among the microelements, a high content of iron and a low content of copper and manganese were revealed.

3.2. Taxonomical and Ecological Analyses

For the first time, 14 studied lakes and water bodies in the Tiksi Bay region revealed 385 species with intraspecies of diatoms. Some species were defined up to the genus level and therefore, excluding this, the floristic list contains 356 taxa (337 species) in total. The species in the genera Pinnularia and Eunotia strongly prevailed with 42 and 40 species, respectively (Appendix A Table A2). One of the floristic parameters of diatoms in the studied water bodies was calculated as the response to the question about how the species list was created for the studied area. The square of the area where the studied water bodies were located was 180 km2; therefore, the calculated number of diatom species per area as index Sp./Area was 2.14 species in 1 km2.
The ecological preferences of the revealed species in 14 studied water bodies are presented in Appendix A Table A3. The percentile distribution of the indicators in ecological categories can be observed in Figure 2 and Figure 3. The data of the indicators were grouped in the histograms according to three catchment basins of the studied territory from down to up. It can be observed that planktonic and planktonic–benthic inhabitants increased with the lake’s altitude (Figure 2a). Temperate-temperature species strongly prevailed, excluding lake 4, where eurythermic indicators dominated (Figure 2b). Indicators of semi-oxygenated waters prevailed in each lake (Figure 2c) and the distribution shows decreasing oxygenation with the decrease in group str with an increasing altitude. Indicators of low salinity groups hb and i prevailed in the studied water bodies community and its distribution is difficult to compare to the altitude and distance from the seacoast (Figure 2d), but seems to partly increase with this distance.
The indicators of water pH distribution show an increase in groups with a high pH corresponding to altitude (Figure 3a). The nutrition-type indicators’ distribution demonstrates an increase in mixotrophs with the water bodies’ altitude and distance from the seacoast (Figure 3b). Indicators of trophic state and water-quality class show an increase in trophicity and organic pollution with the water bodies’ altitude and distance from the seacoast (Figure 3c,d).

3.3. Comparative Analysis

The comparison of the indicator spectrum of the studied water bodies community together with the environmental variables was compared with calculations of similarity at the bottom of Appendix A Table A4 and Table A1. Figure 4 shows four groups of lakes’ indicator spectrums that are the most similar. Group 1 combines the community of lakes 6 and 7 of the greatest distance from the seacoast and with a similar chemical composition (Appendix A Table A1). These two communities were enriched by mixotrophic indicator species of eutrophic and alkaline waters. Group 2 included lakes 3 and 14, which represented the typical indicator distributions with the highest TDS and lowest O2. These lakes also had similar lake-surface areas and coastal lengths. Group 3, including lakes 9 and 10, were characterized by similar indicators spectra; however, the main factor of their similarity was that they had the highest lake altitude. The rest of the lakes could be designated to Group 4, where lakes 1 and 2 were the closest to the seacoast.

3.4. Species–Environment Relationship

The high individuality of the studied communities caused us to calculate the relationship of biological and environmental data for the 11 studied lakes. RDA triplot allowed us to identify three groups of environmental factors to which there was a definite response of biological variables (Figure 5). Cluster 1 increased the water temperature with a number of eurythermic indicators and species per lake. Only lake 4 combined these variables and they did not present an increase in water oxygenation and temperate species number. Cluster 2 included the number of benthic inhabitants, indicators of oxygen enrichment, and increase in species community. Only lake 6 represented this combination of factors. Cluster 3 included only one factor, water pH, which was opposed the direction of the factors in Cluster 2 but did not show a special reaction of the lake’s communities.

3.5. Statistical Mapping

Since all the previous analyses clearly showed the involvement of not only chemical factors, but also factors related to the location of the lake and its morphometry, for the species composition and ecological characteristics of the communities, we decided to conduct the statistical mapping of the environmental and biological data. During the first stage, the altitude of the lake located in the study area was mapped. As can be seen in Figure 6a, the altitude map of the location of the lakes coincides with their position in Google Maps. In this way, the adequacy of the subsequent mapping of our data was checked. As can be seen in the constructed maps, oxygen was the lowest in lakes 3, 11, and especially in lake 4 (Figure 6b). A similar distribution was observed for the pH of the water (Figure 6c). The highest TDS was in the lakes along the coast (Figure 6d) due to sulfates (Figure 6e), and along the entire southern drainage basin due to sulfates and chlorides (Figure 6f).
The distribution of temperature and water color values was similar to the maximum in lake 4 (Figure 7a,b). The distribution of BOD values showed a maximum in the vicinity of the Tiksi settlement (Figure 7c) and along the entire coast. Nitrate nitrogen and phosphates increased towards the north (Figure 7d,e). The concentration of iron, necessary for the development of algae, had a complex distribution, showing the highest values at higher elevations along the basin of the southern watercourse and in lake 4 (Figure 7f).
Interestingly, the distribution of species richness (Table 1) coincided with the distribution of water pH and presented a negative relationship between these two parameters (Figure 6c and Figure 8a). At the same time, the highest value of the number of species per surface area of the lake was only calculated for lake 4 (Figure 8b).
Statistical maps of the bio-indicator numbers in each studied water body could be divided into two sets. The first one combined indicators of water pH, temperature, salinity, organic pollution in two systems, and the diatoms nutrition type (Figure 9). These maps demonstrate the bilateral distribution of different groups of environmental indicators where its number was mostly on the two sides of the study area and lowest in the middle part. This type of distribution can be compared to the July wind rose (Figure 1), and we observed that they were both similar in northeast to southwest direction.
The second set of statistical distribution maps is presented in Figure 10. There are two maps showing high organic pollution indicator distributions—eutrophic and hypertrophic (Figure 10a,b). This number is low; however, the maps show its presence in the water bodies close to the seacoast and absent from the continental stations. Therefore, even a low species number but their presence in the communities allowed us to assume that the seacoast water bodies can be influenced by the sea, so that the trophic level of the lake can be higher if the sea’s influence increases. The diatom heterotrophic nutrition indicator map (hce) highlights lake 4 (Figure 10c) as an exclusive community that contains heterotrophic species that are not represented in any other studied lakes. This map, in comparison with the maps for nitrate concentration, water color, BOD, and iron (Figure 7a–f), and with a high index of species number per lake surface area (Figure 8b), can be combined with the set of variables that show a non-systemic anthropogenic influence. This influence led to the restructuring of the community with an unprecedented growth diversity of diatoms and the enrichment of heterotrophic species that reflect some toxic impact.

4. Discussion

A total of 385 species of diatoms were identified in the phytoplankton of 14 small Arctic tundra water bodies in the vicinity of Tiksi Bay. The studied lakes and watered areas were sampled for the first time in this region. Information about the diatoms in the Lena Delta Wildlife Reserve and the previously studied adjusted area included 413 diatom species [19]. We compared the lists of published species in the reserve and the 14 water bodies studied in this paper, and observed that the diversity of both areas was rather unique. However, similar for both floristic lists were the prevailing species of the genera Pinnularia and Eunotia, which, in our studied area, contained 42 and 40 species, respectively (Appendix A Table A2). Enrichments of flora by species of Pinnularia and Eunotia was revealed in diverse Arctic aquatic flora that has been identified in some lakes in Svalbard [9], Canada [61], Greenland [62], Bolshezemel’skaya Tundra [12], Arctic Chukotka [13,14], and the northern Yakutia lakes [9].
We tried to find a relationship between the morphometry of the studied lakes and diatom species richness. As can be seen in Table 1, the studied lakes were small, shallow, and located at a narrow-range altitude close to the coastline of Tiksi Bay. The number of species in the studied lakes ranged from 33 to 137 (Table 1). The calculated of Sp./Area index for each lake ranged between 128 species per 1 km2 in lake 7 and 8891 species per 1 km2 in lake 4. This is comparable to the index value of lakes in the Kostyanoy Nos Reserve [11]. At the same time, the Sp./Area index for the total studied area of 180 km2 was 2.14 species in 1 km2 for the studied water bodies area of the vicinity of Tiksi Bay, which is comparable with that in the Kostyanoy Nos Reserve in the Bolshezemelskaya Tundra [11]. Table 1 compares the index value and species richness and shows that the species richness is the highest in lake 6; however, the Sp./Area index has the highest value for lake 4. Therefore, lake 4 differs from the usual diversity and morphometry variables in the Tiksi Bay coastal area.
The bio-indicators of the studied lakes on the Tiksi Bay coast demonstrates the predominance of water with the following characteristics: temperate temperature, moderate oxygen, low-to-moderate organic material-enriched, low alkalinity, circumneutral and low salinity. These results are similar to the previously studied bio-indicators in Pechora Bay coast [11] and the closely situated Lena Delta Wildlife Reserve [20,21]. Therefore, Arctic regions’ diversity patterns that are mostly studied with diatoms can advance with the bio-indicator properties and new indices [63]; however, the total mechanisms of its distribution are not enough for a detailed conclusion [64]. In this regard, we divided the lakes into three drainage basins and organized the groups of bio-indicators in a gradient increasing their altitude from low to high. Therefore, the indicators’ distributions not only show the full picture of their content but also the importance of the distance from the coastline. The ecological mapping of the diverse environmental and biological data of the studied lakes’ ecosystems helped to reveal the distribution of the many important variables from northeast to southwest that coincide with the wind direction in the period of July.
An interesting conclusion from the study is the powerful result of a burst of diversity in one lake that presented a one-time impact. Lake 4 stands out for its number of species, as well as its high Species/Area index relative to all other lakes. In addition, the presence of indicators of organic pollution, high trophicity, and heterotrophic nutrition characterize the ecosystem of this lake as having undergone an anthropogenic impact, but successfully coping with it. However, such a conclusion turned out to be possible only with the help of statistical maps of the distribution of various indicators, both environmental and bio-, which, as a method, have already proven their application in environmental analyses [20,21,65,66,67]. Thus, the monitoring of Arctic freshwater habitats is very important, as the world’s freshwater sources remain under threat [68] in the face of global warming and the trend of intensified development of the Arctic.

5. Conclusions

As a result of our study, it can be concluded that, in the 14 lakes in the coastal zone of Tiksi Bay, a high diversity of diatoms was revealed with 385 taxa under the genus rank, among which the genera Pinnularia and Eunotia were the most representative, as in the majority of the studied habitats in the High Arctic. The indicator properties of the identified diatom species allowed us to conclude that, in general, the waters of the studied lakes were fresh, had a neutral pH, and had low salinity and organic pollution levels, except for one of them, which was subjected to one-time anthropogenic pollution, which led to an increase in diversity. The influence of the climatic factor, the direction of the northeasterly winds on the distribution of diatoms, and the geographical factor, the distance from the coastline, was also highlighted. A new approach to the spatial statistical mapping of the diversity and indicator properties of the discovered diatoms and indicators of these habitats helped us to establish these factors. Therefore, spatial ecological mapping in combination with bio-indication is recommended for monitoring the anthropogenic impact on sensitive and threatened aquatic ecosystems in the High Arctic.

Author Contributions

Conceptualization, S.B. and V.G.; methodology, S.B. and V.G.; software, S.B.; validation, S.B., V.G. and S.G.; formal analysis, V.G., S.G. and O.G.; investigation, V.G. and O.G.; resources, V.G.; data curation, S.G. and V.G.; writing—original draft preparation, S.B. and V.G.; writing—review and editing, S.B., V.G., S.G. and O.G.; visualization, S.B.; supervision, V.G.; project administration, V.G.; funding acquisition, V.G. All authors have read and agreed to the published version of the manuscript.

Funding

The research was conducted within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. FWRS-2021-0023, reg. No. AAAA-A21-121012190038-0; theme No. FWRS-2021-0026, reg. No. AAAA-A21-121012190036-6), (theme No. 121051100099-5).

Data Availability Statement

Data of this research is available with DOI of this paper.

Acknowledgments

We are grateful to the Israeli Ministry of Aliyah and Integration for partial support of this work.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Averaged chemical variables with standard deviations of the 11 studied water bodies in the vicinity of Tiksi Bay, July 2021.
Table A1. Averaged chemical variables with standard deviations of the 11 studied water bodies in the vicinity of Tiksi Bay, July 2021.
Variable/Water Body123467910111314
Altitude, m a.s.l.25.0066.00109.0038.0076.0076.0054.0052.0038.0085.00154.00
Water temperature, °C16.7015.1015.0020.4016.1014.5015.1013.3014.0014.6014.70
pH7.51 ± 0.047.42 ± 0.036.70 ± 0.046.74 ± 0.026.73 ± 0.047.30 ± 0.037.3 ± 0.006.89 ± 0.016.65 ± 0.007.22 ± 0.037.34 ± 0.00
O2, mg L−19.87 ± 0.0410.28 ± 0.039.40 ± 0.148.70 ± 0.1410.10 ± 0.0710.47 ± 0.049.98 ± 0.0310.1 ± 0.009.60 ± 0.149.86 ± 0.069.77 ± 0.05
TDS, mg L−1267.5 ± 3.07168.7 ± 2.56225.6 ± 1.74178.9 ± 2.63177.4 ± 1.87160.7 ± 2.33181.6 ± 1.68243.2 ± 2.42234.1 ± 2.36260.9 ± 2.49259.8 ± 2.94
Hardness, mmol. L−13.48 ± 0.042.28 ± 0.033.09 ± 0.012.29 ± 0.022.37 ± 0.032.13 ± 0.042.44 ± 0.023.34 ± 0.023.16 ± 0.013.61 ± 0.023.34 ± 0.01
Ca, mg L−145.00 ± 0.1422.44 ± 0.0838.60 ± 0.0732.00 ± 0.1427.20 ± 0.1428.60 ± 0.1428.40 ± 0.1435.20 ± 0.1436.80 ± 0.1432.40 ± 0.1438.20 ± 0.14
Mg, mg L−115.00 ± 0.7114.09 ± 0.7114.20 ± 0.578.40 ± 0.4212.30 ± 0.578.60 ± 0.4212.40 ± 0.5719.20 ± 0.8516.10 ± 0.8524.20 ± 0.8517.40 ± 0.71
Na, mg L−15.87 ± 0.282.6 ± 0.211.14 ± 0.073.91 ± 0.281.12 ± 0.080.66 ± 0.041.43 ± 0.110.93 ± 0.071.28 ± 0.081.39 ± 0.116.03 ± 0.40
K, mg L−11.46 ± 0.070.81 ± 0.030.49 ± 0.010.46 ± 0.010.57 ± 0.010.58 ± 0.030.57 ± 0.010.48 ± 0.010.37 ± 0.010.86 ± 0.041.6 ± 0.07
HCO3, mg L−1100 ± 0.4267.12 ± 0.5798.6 ± 0.7179.50 ± 0.8598.60 ± 0.5789.40 ± 0.8590.60 ± 0.57120.4 ± 0.57120.5 ± 0.42130.4 ± 0.57110.2 ± 0.85
Cl, mg L−16.20 ± 0.033.55 ± 0.004.80 ± 0.034.25 ± 0.073.50 ± 0.073.40 ± 0.143.20 ± 0.003.50 ± 0.074.00 ± 0.148.20 ± 0.074.80 ± 0.07
SO4, mg L−194.00 ± 1.4158.12 ± 0.9667.80 ± 0.2850.40 ± 0.8534.20 ± 0.4229.50 ± 0.7145.00 ± 0.2863.50 ± 0.7155.00 ± 0.7163.50 ± 0.7181.60 ± 0.71
N-NH4, mg L-10.26 ± 0.010.20 ± 0.000.08 ± 0.000.19 ± 0.020.14 ± 0.010.15 ± 0.000.12 ± 0.000.19 ± 0.010.24 ± 0.020.09 ± 0.000.16 ± 0.01
N-NO3, mg L−10.17 ± 0.010.12 ± 0.010.12 ± 0.010.19 ± 0.010.14 ± 0.010.09 ± 0.010.11 ± 0.010.12 ± 0.010.13 ± 0.010.14 ± 0.010.13 ± 0.01
P tot, mg L−10.20 ± 0.010.08 ± 0.010.05 ± 0.000.08 ± 0.010.14 ± 0.010.13 ± 0.010.07 ± 0.000.09 ± 0.000.11 ± 0.000.10 ± 0.010.10 ± 0.00
Color, Pt/Co grad.16.00 ± 0.7113.00 ± 0.7113.00 ± 0.7125.00 ± 0.7112.00 ± 0.7119.00 ± 0.7115.00 ± 0.7111.00 ± 0.7110.00 ± 0.7118.00 ± 0.7119.00 ± 0.71
BOD, mg O L−12.48 ± 0.171.75 ± 0.141.46 ± 0.062.45 ± 0.081.01 ± 0.072.00 ± 0.071.61 ± 0.142.48 ± 0.142.39 ± 0.141.43 ± 0.110.83 ± 0.04
COD, mg O L−114.20 ± 0.9914.40 ± 0.8517.60 ± 0.8514.00 ± 0.7118.20 ± 0.8518.40 ± 0.9917.80 ± 0.8518.00 ± 0.9916.20 ± 0.8516.80 ± 0.8516.40 ± 1.13
Fe tot, mg L−10.41 ± 0.060.29 ± 0.040.40 ± 0.040.70 ± 0.060.55 ± 0.060.67 ± 0.070.29 ± 0.060.65 ± 0.070.68 ± 0.070.62 ± 0.060.50 ± 0.06
Mn, µg L−17.00 ± 1.414.00 ± 0.422.00 ± 0.286.00 ± 0.573.00 ± 0.282.00 ± 0.424.00 ± 0.717.00 ± 1.417.00 ± 1.416.00 ± 0.717.00 ± 1.41
Cu, µg L−15.00 ± 0.573.00 ± 0.573.00 ± 0.575.00 ± 0.713.00 ± 0.282.00 ± 0.283.00 ± 0.571.00 ± 0.144.00 ± 0.713.00 ± 0.354.00 ± 0.71
Table A2. Diatom species richness in the 14 studied water bodies in the vicinity of Tiksi Bay, July 2021. “1”—present, “0”—absent.
Table A2. Diatom species richness in the 14 studied water bodies in the vicinity of Tiksi Bay, July 2021. “1”—present, “0”—absent.
Taxa1234567891011121314
Achnanthes adnata Bory00001000001000
Achnanthes ingratiformis Lange-Bertalot00000000100000
Achnanthidium minutissimum (Kützing) Czarnecki11110110111011
Achnanthidium nodosum (Cleve) Tseplik and Chudaev10000000000000
Achnanthidium petersenii (Hustedt) C. E. Wetzel, L. Ector, D. M. Williams, and I. Jüttner10111011111110
Achnanthidium saprophilum (H. Kobayashi and Mayama) Round and Bukhtiyarova00000100001011
Achnanthidium sp.01010000010000
Amphora copulata (Kützing) Schoeman and R. E. M. Archibald01011110111001
Amphora indistincta Levkov01001100001011
Amphora pseudosibirica Levkov and Pavlov00100000001011
Amphora sp.01000000000000
Aneumastus tusculus (Ehrenberg) D. G. Mann and A. J. Stickle01000000000000
Asterionella formosa Hassall00000110001000
Aulacoseira alpigena (Grunow) Krammer 10110111011111
Aulacoseira ambigua (Grunow) Simonsen00010100100010
Aulacoseira granulata (Ehrenberg) Simonsen 00011100010010
Aulacoseira islandica (O. Müller) Simonsen00001100000000
Aulacoseira lirata (Ehrenberg) R. Ross00000001000000
Aulacoseira perglabra (Østrup) E. Y. Haworth00000000000010
Aulacoseira pfaffiana (Reinsch) Krammer00000001000000
Aulacoseira pusilla (F. Meister) A. Tuji and A. Houki00000000010000
Aulacoseira scalaris (Grunow) Houk, Klee, and Passauer11010101010000
Aulacoseira subarctica (O. Müller) E. Y. Haworth00000100000000
Aulacoseira valida (Grunow) Krammer00000000010000
Boreozonacola hustedtii Lange-Bertalot, Kulikovskiy, and Witkowski00000000110000
Brachysira brebissonii R. Ross11010101110100
Brachysira calcicola Lange-Bertalot00000000010000
Brachysira neoexilis Lange-Bertalot10000001110100
Brachysira procera Lange-Bertalot and Gerd Moser00000001010000
Brachysira styriaca (Grunow) R. Ross10000000000000
Caloneis arctica (Krasske) Lange-Bertalot and S. I. Genkal01000100001000
Caloneis bacillum (Grunow) Cleve00100110110010
Caloneis holarctica Kulikovskiy, Lange-Bertalot, and A. Witkowski11100111001100
Caloneis silicula (Ehrenberg) Cleve var. silicula00010000000000
Caloneis silicula var. elliptica Mayer00000100000000
Campylodiscus hibernicus Ehrenberg00000000000001
Cavinula cocconeiformis (W. Gregory ex Greville) D. G. Mann and A. J. Stickle10001111111010
Cavinula jaernefeltii (Hustedt) D. G. Mann and A. J. Stickle10100100101011
Cavinula pseudoscutiformis (Hustedt) D. G. Mann and Stickle00111110011011
Cavinula sp.00000100000000
Chamaepinnularia begeri (Krasske) Lange-Bertalot00000100000000
Chamaepinnularia circumborealis Lange-Bertalot00000100000000
Chamaepinnularia krookiformis (Krammer) Lange-Bertalot and Krammer00100000000000
Chamaepinnularia sp.00000000000100
Cocconeis lineata Ehrenberg00000100000000
Cocconeis neodiminuta Krammer00010100000000
Cocconeis placentula Ehrenberg var. placentula00100100100000
Cocconeis placentula var. euglypta (Ehrenberg) Cleve10000100001000
Cocconeis sp.00000000100000
Craticula molestiformis (Hustedt) Mayama00000110000010
Cyclostephanos dubius (Hustedt) Round00000100000000
Cyclostephanos makarovae (S. I. Genkal) K. Schultz00001000000010
Cyclotella atomus Hustedt00001100000010
Cyclotella distinguenda Hustedt10011100101100
Cyclotella meduanae H. Germain00001100000010
Cymatopleura elliptica (Brébisson) W. Smith00000001000000
Cymbella arctica (Lagerstedt) A. W. F. Schmidt00001100000000
Cymbella cleve-eulerae Krammer00000100100000
Cymbella cymbiformis C. Agardh00001001000000
Cymbella hantzschiana Krammer00000100000000
Cymbella krammeri Bahls01100110100011
Cymbella neogena (Grunow) Krammer01000110000010
Cymbella proxima Reimer00000101000000
Cymbella subcistula Krammer00000100000000
Cymbella sp.00000100000000
Cymbopleura amphicephala (Nägeli ex Kützing) Krammer00000100000010
Cymbopleura anglica (Lagerstedt) Krammer00100111011010
Cymbopleura angustata var. spitsbergensis Krammer01100101100010
Cymbopleura designata (Krammer) Bahls01000000000000
Cymbopleura elliptica Krammer01000000100000
Cymbopleura hybrida (Grunow ex Cleve) Krammer00000000110000
Cymbopleura incertiformis Krammer10000000010000
Cymbopleura naviculiformis (Auerswald ex Heiberg) Krammer00000001000000
Cymbopleura oblongata var. stenoraphe Krammer00000000000010
Cymbopleura subanglica Krammer00000000000001
Cymbopleura subapiculata Krammer00000100000000
Cymbopleura subcuspidata (Krammer) Krammer00100110001010
Cymbopleura truncata Krammer01100000000000
Cymbopleura tynnii (Krammer) Krammer00000000010100
Cymbopleura sp.00000000001000
Denticula tenuis Kützing01000100000000
Diatoma moniliformis (Kützing) D. M. Williams11000000000000
Diatoma vulgaris Bory00000100000000
Diploneis boldtiana Cleve00000101010000
Diploneis modica Hustedt00000100001011
Diploneis oblongella (Nägeli ex Kützing) A. Cleve10100100001011
Diploneis oculata (Brébisson) Cleve00100100111010
Diploneis ovalis (Hilse) Cleve00000001000000
Diploneis parma Cleve00100000000000
Diploneis subovalis Cleve01000000001010
Discostella pseudostelligera (Hustedt) Houk and Klee00000000100010
Discostella stelligera (Cleve and Grunow) Houk and Klee00001000000000
Encyonema auerswaldii Rabenhorst00000000100000
Encyonema elginense (Krammer) D. G. Mann00000000000100
Encyonema gaeumannii (F. Meister) Krammer10000000000000
Encyonema groenlandica (Foged) Kulikovskiy and Lange-Bertalot00000000000100
Encyonema latens (Krasske) D. G. Mann00110110010000
Encyonema lunatum (W. Smith) Van Heurck01000000111100
Encyonema minutum (Hilse) D. G. Mann var. minutum11101111000100
Encyonema neogracile Krammer10000000000101
Encyonema perpusillum (A. Cleve) D. G. Mann00000100000000
Encyonema reichardtii (Krammer) D. G. Mann00000100000000
Encyonema silesiacum (Bleisch) D. G. Mann11011111101010
Encyonema ventricosum (C. Agardh) Grunow00000001010000
Encyonema vulgare Krammer00010010001000
Encyonema sp.00000100000000
Encyonopsis cesatiformis Krammer01000000000000
Encyonopsis cesatii (Rabenhorst) Krammer11110101010010
Encyonopsis perborealis Krammer01100100000000
Entomoneis ornata (Bailey) Reimer00000010000010
Eucocconeis alpestris (Brun) Lange-Bertalot00100000000000
Eucocconeis depressa (Cleve) Lange-Bertalot10100000000000
Eucocconeis diluviana (Hustedt) Lange-Bertalot01000000000000
Eucocconeis flexella (Kützing) F. Meister01110000000000
Eucocconeis laevis (Østrup) Lange-Bertalot11100110111001
Eucocconeis leptostriata Lange-Bertalot apud H. Lange-Bertalot and S. I. Genkal00000000100000
Eucocconeis quadratarea (Østrup) Lange-Bertalot11100110011001
Eunotia ambivalens Lange-Bertalot and Tagliaventi00000001000000
Eunotia arcus Ehrenberg00000010000000
Eunotia bidens Ehrenberg00000000010000
Eunotia bigibboidea Lange-Bertalot and Witkowski00000000010000
Eunotia bilunaris (Ehrenberg) Schaarschmidt01000010000100
Eunotia boreoalpina Lange-Bertalot and Nörpel-Schempp00010000000000
Eunotia boreotenuis Nörpel-Schempp and Lange-Bertalot00110010101100
Eunotia botuliformis F. Wild, Nörpel, and Lange-Bertalot00000001000100
Eunotia cantonatii Lange-Bertalot and Tagliaventi00000001000000
Eunotia chelonia Nörpel-Schempp, Lange-Bertalot, and Metzeltin00010000000000
Eunotia curtagrunowii Nörpel-Schempp and Lange-Bertalot00000001010000
Eunotia elegans Østrup10000000000000
Eunotia eurycephala (Grunow) Nörpel-Schempp and Lange-Bertalot10000000000000
Eunotia ewa Lange-Bertalot and Witkowski00010000000000
Eunotia faba Ehrenberg10000111000010
Eunotia flexuosa (Brébisson ex Kützing) Kützing00000000001000
Eunotia fureyae Lange-Bertalot00000001000000
Eunotia genuflexa Nörpel-Schempp00000000000100
Eunotia groenlandica Nörpel-Schempp and Lange-Bertalot00000000001000
Eunotia incisa W. Smith ex W. Gregory00010011010000
Eunotia islandica Østrup00100000000000
Eunotia julma Lange-Bertalot10000000011000
Eunotia major (W. Smith) Rabenhorst00000000001000
Eunotia meisteri Hustedt00000000010000
Eunotia minor (Kützing) Grunow00010000000000
Eunotia monnieri Lange-Bertalot and Tagliaventi00000001001000
Eunotia mucophila (Lange-Bertalot, Nörpel-Schempp, and Alles) Lange-Bertalot00010000000100
Eunotia naegelii Migula00000001000100
Eunotia neocompacta var. vixcompacta Lange-Bertalot00010000000000
Eunotia paralleladubia Lange-Bertalot and S.Mayama00000000010100
Eunotia parapraerupta Lange-Bertalot and Metzeltin01000000000000
Eunotia pseudogroenlandica Lange-Bertalot and Tagliaventi00010000000100
Eunotia rhomboidea Hustedt00000000010000
Eunotia scandiorussica Kulikovskiy, Lange-Bertalot, Genkal, and Witkowski00010001000000
Eunotia semicircularis (Ehrenberg) Lange-Bertalot and Metzeltin01000000000000
Eunotia septentrionalis Østrup00010000000100
Eunotia subarcuatoides Alles, Nörpel, and Lange-Bertalot10010101000100
Eunotia subherkiniensis Lange-Bertalot00000001000000
Eunotia ursamaioris Lange-Bertalot and Nörpel-Schempp10110100111100
Eunotia sp.00110000000001
Fallacia crassicostata Lange-Bertalot and Werum00000000001000
Fallacia pygmaea (Kützing) Stickle and D. G. Mann00000100001000
Fallacia sp.00000000010000
Fragilaria aquaplus Lange-Bertalot and S. Ulrich10010100000000
Fragilaria capucina Desmazières11001001000000
Fragilaria radians (Kützing) D. M. Williams and Round00100100011010
Fragilaria rumpens (Kützing) G. W. F. Carlson00100000000000
Fragilaria saxoplanctonica Lange-Bertalot and S. Ulrich00000000010000
Fragilaria vaucheriae (Kützing) J. B. Petersen00111110011000
Fragilaria sp.00100000101000
Fragilariforma bicapitata (A.Mayer) D. M. Williams and Round00010100000000
Fragilariforma constricta (Ehrenberg) D. M. Williams and Round00100000111010
Fragilariforma mesolepta (Rabenhorst) Kharitonov10001000000000
Fragilariforma virescens (Ralfs) D. M. Williams and Round00000000010000
Frustulia crassinervia (Brébisson ex W. Smith) Lange-Bertalot and Krammer10010111100100
Frustulia erifuga Lange-Bertalot and Krammer00000101000000
Frustulia krammeri Lange-Bertalot and Metzeltin10001100000000
Frustulia saxonica Rabenhorst10010100010101
Geissleria davydovae Genkal et Yaruschina10000000001000
Genkalia digituloides (Lange-Bertalot) Lange-Bertalot and Kulikovskiy01000001111000
Gololobovia obliqua (W. Gregory) Kulikovskiy, Glushchenko, and Kociolek01000100001000
Gomphonema acuminatum Ehrenberg01000001000000
Gomphonema angusticephalum E. Reichardt and Lange-Bertalot10110111111011
Gomphonema brebissonii Kützing00010001000000
Gomphonema capitatum Ehrenberg00000000001000
Gomphonema coronatum Ehrenberg00000100000000
Gomphonema gracile Ehrenberg00100000101000
Gomphonema hebridense W. Gregory10010000000000
Gomphonema italicum Kützing00000000000100
Gomphonema lagerheimii A. Cleve00010001011010
Gomphonema laticollum E. Reichardt00000000001000
Gomphonema microcapitatum Kulikovskiy, Kociolek, and Solak00000000001000
Gomphonema mihoi Levkov01010000000000
Gomphonema minutum f. pachypus Lange-Bertalot and E. Reichardt00000000000010
Gomphonema olivaceoides Hustedt00000000010000
Gomphonema parvulum (Kützing) Kützing10010100010010
Gomphonema pseudacuminatum Kulikovskiy, Kociolek, and Solak00000110000000
Gomphonema truncatum Ehrenberg10010000000000
Gomphonema sp.10110010111010
Gomphosphenia vallei Beauger, C. E. Wetzel, Allain, and Ector00000000000001
Gomphosphenia sp.00000100000001
Gyrosigma acuminatum (Kützing) Rabenhorst00100010000011
Gyrosigma sp.00000000000010
Halamphora hassiaca (Krammer and S.Strecker) Lange-Bertalot00000000001000
Handmannia antiqua (W.Smith) Kociolek et Khursevich01000000100000
Handmannia comta (Ehrenberg) Kociolek et Khursevich emend. Genkal00001100100000
Hantzschia sp.00000000001000
Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin, and Witkowski00000000100000
Hippodonta hungarica (Grunow) Lange-Bertalot, Metzeltin, and Witkowski00000000001000
Humidophila brekkaensis (J. B. Petersen) R. L. Lowe, Kociolek, J. R. Johansen, Van de Vijver, Lange-Bertalot, and Krammer et Kopalova00000010010000
Humidophila gallica (W. Smith) Lowe, Kociolek, Q. You, Q. Wang, and Stepanek00000001010000
Humidophila perpusilla (Grunow) R. L. Lowe, Kociolek, J. R. Johansen, Van de Vijver, Lange-Bertalot, and Kopalová00100000000000
Humidophila schmassmannii (Hustedt) Buczkó and Wojtal10100101000000
Humidophila sp.00000000010000
Hygropetra balfouriana (Grunow ex Cleve) Krammer and Lange-Bertalot01000100010010
Iconella curvula (W. Smith) Ruck and Nakov10000000000000
Iconella linearis (W. Smith) Ruck and Nakov00000000001000
Iconella splendida (Ehrenberg) Ruck and Nakov00000010000001
Karayevia laterostrata (Hustedt) Bukhtiyarova10000000011011
Kobayasiella parasubtilissima (H. Kobayasi and T. Nagumo) Lange-Bertalot01000001000000
Kobayasiella subtilissima (Cleve) Lange-Bertalot00000001000000
Mayamaea disjuncta (Hustedt) J. Y. Li and Y. Z. Qi00110000010000
Melosira varians C. Agardh00000100000000
Navicula angusta Grunow10000001000000
Navicula chiarae Lange-Bertalot and Genkal00010000000000
Navicula cryptocephala Kützing 00110110001010
Navicula cryptotenella Lange-Bertalot00000100001001
Navicula cryptotenelloides Lange-Bertalot00000000010000
Navicula mediocostata E. Reichardt00000100000000
Navicula notha J. H. Wallace10000100000000
Navicula phyllepta Kützing01100110101000
Navicula phylleptosoma Lange-Bertalot00100010001010
Navicula radiosa Kützing11110110111011
Navicula reinhardtii (Grunow) Grunow 00000000100000
Navicula rostellata Kützing00000000000001
Navicula tripunctata (O. F. Müller) Bory00000100000000
Navicula trivialis Lange-Bertalot01000000000000
Navicula viridulacalcis Lange-Bertalot00000000001010
Navicula wygaschii Lange-Bertalot01000000010000
Navicula sp.00000000000010
Naviculadicta sp.01100110101011
Navigeia paludosa (Hustedt) Bukhtiyarova00100000000000
Navigeia thingvallae (Østrup) Bukhtiyarova00000010000000
Neidiopsis wulffii (J. B. Petersen) Lange-Bertalot00000000001010
Neidium affine (Ehrenberg) Pfitzer00010000001000
Neidium ampliatum (Ehrenberg) Krammer01011110001011
Neidium bisulcatum (Lagerstedt) Cleve00000011010110
Neidium dubium (Ehenberg) Cleve00000000000010
Neidium hercynicum Ant. Mayer00010010001000
Neidium hitchcockii (Ehrenberg) Cleve00000110001000
Neidium iridis (Ehrenberg) Cleve 00100000001010
Neidium sp.00000100001000
Nitzschia acicularis (Kützing) W. Smith00000000000001
Nitzschia acidoclinata Lange-Bertalot00000000100000
Nitzschia alpina Hustedt01100000010000
Nitzschia capitellata Hustedt 00000001000000
Nitzschia commutatoides Lange-Bertalot00000000001010
Nitzschia dissipata (Kützing) Rabenhorst00000110001011
Nitzschia fonticola (Grunow) Grunow00000100000010
Nitzschia frustulum (Kützing) Grunow00000110011000
Nitzschia graciliformis Lange-Bertalot and Simonsen00000000001000
Nitzschia gracilis Hantzsch00000010000100
Nitzschia inconspicua Grunow10001100010001
Nitzschia intermedia Hantzsch ex Cleve and Grunow00000000010000
Nitzschia linearis W. Smith00000010001001
Nitzschia media Hantzsch10100010001010
Nitzschia perminuta Grunow11111111111100
Nitzschia rosenstockii Lange-Bertalot00000100000011
Nupela impexiformis (Lange-Bertalot) Lange-Bertalot00000000001011
Nupela neogracillima Kulikovskiy and Lange-Bertalot00100000000000
Nupela silvahercynia (Lange-Bertalot) Lange-Bertalot00000001000000
Nupela tenuicephala (Hustedt) Lange-Bertalot01000001000000
Pantocsekiella costei (J. C. Druart and F. Straub) K. T. Kiss and E. Ács00000000000010
Pinnularia acoricola Hustedt00001000101000
Pinnularia ammerensis Kulikovskiy, Lange-Bertalot, and Metzeltin00000000000100
Pinnularia anglica Krammer00100000000000
Pinnularia angustarea Kulikovskiy, Lange-Bertalot, A. Witkovski, and N. I. Dorofeyuk00000000000100
Pinnularia brebissonii (Kützing) Rabenhorst10000000000010
Pinnularia bottnica Krammer00000100000000
Pinnularia brandelii Cleve00000001000000
Pinnularia canadensis Krammer00000010011000
Pinnularia cuneola E. Reichardt00000100000000
Pinnularia decrescens (Grunow) Krammer00000000001000
Pinnularia divergens var. sublinearis Cleve00000000000100
Pinnularia eifeliana (Krammer) Krammer00000100001000
Pinnularia grunowii Krammer00010110000000
Pinnularia halophila Krammer00000000000010
Pinnularia krammeri Metzeltin00000000011010
Pinnularia lagerstedtii (Cleve) A. Cleve00010000000000
Pinnularia lailaensis Foged00000010001000
Pinnularia macilenta Ehrenberg00010101000100
Pinnularia microstauron var. rostrata Krammer00010000000000
Pinnularia neohalophila Kulikovskiy, Genkal, and Mikheeva00010000001000
Pinnularia nodosa (Ehrenberg) W. Smith var. nodosa00000011000000
Pinnularia nodosa var. percapitata Krammer00000100000000
Pinnularia nodosa var. robusta (Foged) Krammer00000001000000
Pinnularia notabilis Krammer00000000001110
Pinnularia oriunda Krammer10000010001000
Pinnularia oriundiformis Krammer10000001000000
Pinnularia parvulissima Krammer00010000001000
Pinnularia permicrostauron Krammer and Metzeltin00000001000000
Pinnularia pluvianiformis Krammer00000010000000
Pinnularia rhombarea Krammer00000000001010
Pinnularia rupestris Hantzsch00000110000010
Pinnularia septentrionalis Krammer00000100000000
Pinnularia similiformis Krammer00000010000000
Pinnularia spitsbergensis Cleve00000000000100
Pinnularia stricta Hustedt00000000011100
Pinnularia subanglica Krammer00001000000000
Pinnularia subrostrata (A. Cleve) A. Cleve00010000010110
Pinnularia subrupestris Krammer00000000100000
Pinnularia subundulata Østrup00001000000000
Pinnularia undula (Schumann) Krammer00000100000000
Pinnularia viridis (Nitzsch) Ehrenberg01000000000000
Pinnularia sp.01100011101011
Placogeia similis (Krasske) Bukhtiyarova00100101101010
Placoneis amphibola (Cleve) E. J. Cox01000100000000
Placoneis clementioides (Hustedt) E. J. Cox00000000000001
Placoneis elginensis (W.Gregory) E. J. Cox00000000001000
Placoneis interglacialis (Hustedt) E. J. Cox00000100000010
Placoneis opportuna (Hustedt) Chudaev and Gololobova00000100000010
Placoneis sp.01000000001000
Planothidium straubianum C. E. Wetzel, Van de Vijver, and L.Ector00100100000000
Planothidium sp.00000100010011
Pleurosigma elongatum W. Smith00010000000000
Praestephanos triporus (Genkal and G. V. Kuzmin) A. Tuji and J.-S. Ki00000110010000
Psammothidium bioretii (H. Germain) Bukhtiyarova and Round00100001101010
Psammothidium chlidanos (M. H. Hohn and Hellerman) Lange-Bertalot01010110111000
Psammothidium daonense (Lange-Bertalot) Lange-Bertalot01000010000010
Psammothidium helveticum (Hustedt) Bukhtiyarova and Round10000000001000
Psammothidium kryophilum (J. B. Petersen) E. Reichardt10000000000000
Psammothidium levanderi (Hustedt) Bukhtiyarova and Round10010000010000
Psammothidium marginulatum (Grunow) Bukhtiyarova and Round00100000101000
Psammothidium rechtense (Leclercq) Lange-Bertalot00100111101000
Psammothidium rossii (Hustedt) Bukhtiyarova and Round00100101000010
Psammothidium scoticum (R. J. Flower and V. J. Jones) Bukhtiyarova and Round00100000100000
Psammothidium subatomoides (Hustedt) Bukhtiyarova and Round01000000001000
Psammothidium subsalsum (J. B. Petersen) Kulikowskiy, Witkowski, and Pliński00000000010000
Psammothidium ventrale (Krasske) Bukhtiyarova and Round00110000111010
Psammothidium sp.00100100001000
Pseudostaurosira brevistriata (Grunow) D. M. Williams and Round11000000000001
Pseudostaurosira parasitica (W. Smith) E. Morales00000000000101
Pulchellophycus obsitus (Hustedt) Edlund and M. J. Wynne00000000000010
Pulchellophycus sp.00000000000001
Reimeria sinuata (W. Gregory) Kociolek and Stoermer00000100110000
Sellaphora bacillum (Ehrenberg) D. G. Mann00000110000110
Sellaphora difficillima (Hustedt) C. E. Wetzel, L. Ector, and D. G. Mann00000000010000
Sellaphora insolita (É. Manguin ex Kociolek and B. de Reviers) P. B. Hamilton and D. Antoniades00100100011001
Sellaphora laevissima (Kützing) D. G. Mann00111111011010
Sellaphora vitabunda (Hustedt) D. G. Mann00000000001010
Sellaphora sp.00000000000101
Simonsenia delognei (Grunow) Lange-Bertalot00000100000010
Skabitschewskia oestrupii (A. Cleve) Kuliskovskiy and Lange-Bertalot00100110101011
Skabitschewskia peragalloi (Brun and Héribaud) Kuliskovskiy and Lange-Bertalot10100110101011
Stauroneis amphicephala Kützing01010000000000
Stauroneis anceps Ehrenberg 00000000001000
Stauroneis gracilis Ehrenberg00000010001110
Stauroneis guslyakovii Genkal and Yarushina00010000000000
Stauroneis phoenicenteron (Nitzsch) Ehrenberg01010010001010
Stauroneis reichardtii Lange-Bertalot, Cavacini, Tagliaventi, and Alfinito10000001011010
Stauroneis schulzii Jousé00010000000000
Stauroneis smithii Grunow 00100100001011
Stauroneis sp.00010000000000
Staurosira sviridae Kulikovskiy, Genkal, and Mikheeva00000000010000
Staurosirella lanceolata (Hustedt) E. A. Morales, C. Wetzel, and L. Ector10000100000000
Staurosirella pinnata (Ehrenberg) D. M. Williams and Round11000101101011
Stenopterobia heribaudii (Playfair) Playfair00000000001000
Stephanocyclus meneghinianus (Kützing) Kulikovskiy, Genkal, and Kociolek00001100000010
Stephanodiscus hantzschii Grunow01100100010001
Stephanodiscus hashiensis H. Tanaka00000100000010
Stephanodiscus minutulus (Kützing) Cleve and Möller10000000000000
Stephanodiscus neoastraea Håkansson and Hickel emend. Casper, Scheffler et Augsten10001000010000
Surirella angusta Kützing00100010000000
Surirella librile (Ehrenberg) Ehrenberg00000000001010
Surirella minuta Brébisson ex Kützing00000100000000
Surirella roba Leclercq00000001000000
Surirella sp.00000010000010
Tabellaria flocculosa (Roth) Kützing11111111010111
Tetracyclus glans (Ehrenberg) F. W. Mills10000010000000
Thalassiosira pseudonana Hasle and Heimdal00001000000000
Thalassiosira sp.00000100000000
Tryblionella angustata W. Smith 00110000000000
Tryblionella calida (Grunow) D. G. Mann00100000000000
Tryblionella hungarica (Grunow) Frenguelli00000000001000
Tryblionella littoralis (Grunow) D. G. Mann00000000100000
Ulnaria acus (Kützing) Aboal00000010000011
Ulnaria ulna (Nitzsch) Compère00100111001000
Ulnaria sp.00000100000000
Table A3. Diatom species ecological preferences in 14 studied water bodies in the vicinity of Tiksi Bay, July 2021.
Table A3. Diatom species ecological preferences in 14 studied water bodies in the vicinity of Tiksi Bay, July 2021.
NoTaxaHABTOXYHALpHpH-ranDIndex SSAPAUT-HETTRO
1Achnanthes adnata BoryB--mhalf--2.0b-me
2Achnanthes ingratiformis Lange-BertalotB----8.00-----
3Achnanthidium minutissimum (Kützing) CzarneckiP-Betermst-striind4.3–9.2es0.95batee
4Achnanthidium nodosum (Cleve) Tseplik and ChudaevB--hbacf--1.0o-ot
5Achnanthidium petersenii (Hustedt) C. E. Wetzel, L. Ector, D. M. Williams, and I. JüttnerB-strhbind6.9-0.2oatsot
6Achnanthidium saprophilum (H. Kobayashi and Mayama) Round and BukhtiyarovaBtemp---7.3–7.8-----
7Achnanthidium sp.-----------
8Amphora copulata (Kützing) Schoeman and R. E. M. ArchibaldBtempst-strialf7.7es1.5o-batee
9Amphora indistincta Levkov-----------
10Amphora pseudosibirica Levkov and Pavlov-----------
11Amphora sp.-----------
12Aneumastus tusculus (Ehrenberg) D. G. Mann and A. J. StickleP-B-stialb--0.9bateo–e
13Asterionella formosa HassallPtempst-strialf6.4–7.99sx1.35bateme
14Aulacoseira alpigena (Grunow) KrammerP-Btempst-strialf4.8–8.4sp0.8x-bateot
15Aulacoseira ambigua (Grunow) SimonsenPtempst-strialf6.0–8.5sp1.7b-oateom
16Aulacoseira granulata (Ehrenberg) SimonsenP-Btempst-strialf5.8–9.4es2.0batee
17Aulacoseira islandica (O. Müller) SimonsenP-Bcoolst-striind8.0es2.0bateo–e
18Aulacoseira lirata (Ehrenberg) R. RossP-Btemp-hbacf4.6–7.3-0.5x-oate-
19Aulacoseira perglabra (Østrup) E. Y. HaworthP-Btemp-hbacf4.76-1.0oateot
20Aulacoseira pfaffiana (Reinsch) KrammerP-Bcoolstrhbacf--0.3xatsot
21Aulacoseira pusilla (F. Meister) A. Tuji and A. Houki-----------
22Aulacoseira scalaris (Grunow) Houk, Klee, and Passauer-----------
23Aulacoseira subarctica (O. Müller) E. Y. HaworthPtempst-strialf6.72–8.14-1.7b-oatsom
24Aulacoseira valida (Grunow) KrammerP-B--ialf-es1.3oateom
25Boreozonacola hustedtii Lange-Bertalot, Kulikovskiy, and Witkowski-----------
26Brachysira brebissonii R. RossP-Btempst-strhbacf4.6–7.8sx0.4oatsot
27Brachysira calcicola Lange-BertalotB------1.0o--
28Brachysira neoexilis Lange-BertalotB---acf7.8-0.5x-o-om
29Brachysira procera Lange-Bertalot and Gerd MoserB---acf6.3–6.5-----
30Brachysira styriaca (Grunow) R. RossBtemp-iind6.45–7.26es1.0o-ot
31Caloneis arctica (Krasske) Lange-Bertalot and S. I. Genkal-----------
32Caloneis bacillum (Grunow) CleveBtempst-strialf6.8–8.4es1.3batsme
33Caloneis holarctica Kulikovskiy, Lange-Bertalot, and A.Witkowski-----------
34Caloneis silicula (Ehrenberg) Cleve var. siliculaBwarmstiind6.3–9.0sp1.3oatsom
35Caloneis silicula var. elliptica Mayer-----------
36Campylodiscus hibernicus EhrenbergB-stiind-es2.0batsot
37Cavinula cocconeiformis (W. Gregory ex Greville) D. G. Mann and A. J. StickleP-Btempst-striind6.57–7.5es0.4x-oatsom
38Cavinula jaernefeltii (Hustedt) D. G. Mann and A. J. StickleBtempstriacf6.71–7.5-2.0batsom
39Cavinula pseudoscutiformis (Hustedt) D. G. Mann and StickleP-Btempst-striind6.2–8.4sx0.4batsme
40Cavinula sp.-----------
41Chamaepinnularia begeri (Krasske) Lange-BertalotBtemp-iind6.35-1.0oats-
42Chamaepinnularia circumborealis Lange-Bertalot-----------
43Chamaepinnularia krookiformis (Krammer) Lange-Bertalot and KrammerB--hlneu--1.0o--
44Chamaepinnularia sp.-----------
45Cocconeis lineata EhrenbergP-Btempst-strialf6.3–9.5sx1.2batee
46Cocconeis neodiminuta KrammerP-Btempst-strialf7–9sx0.9batsme
47Cocconeis placentula Ehrenberg var. placentulaP-Btempst-strialf5.5–9.0es1.35oateme
48Cocconeis placentula var. euglypta (Ehrenberg) CleveP-Btempst-strialf5.5–9.0sx1.3bateom
49Cocconeis sp.-----------
50Craticula molestiformis (Hustedt) MayamaBtempstialf6.8–8.4-3.6a-phnee
51Cyclostephanos dubius (Hustedt) RoundP-Btempst-strhlalf5.7–9.5es2.0aatee
52Cyclostephanos makarovae (S. I. Genkal) K. Schultz-----------
53Cyclotella atomus HustedtP-B-st-strhlalf6.9–8.5sp2.5b-aatee
54Cyclotella distinguenda HustedtP-strhlalf8.2-1.3o-om
55Cyclotella meduanae H. Germain-----------
56Cymatopleura elliptica (Brébisson) W. SmithP-Btempst-strialf5.7–8.5-1.4batee
57Cymbella arctica (Lagerstedt) A. W. F. SchmidtB--ialf8.30-1.0o-ot
58Cymbella cleve-eulerae Krammer-----------
59Cymbella cymbiformis C. AgardhBtempst-strialf6.2–9.0sx2.0batsom
60Cymbella hantzschiana Krammer-----------
61Cymbella krammeri Bahls-----------
62Cymbella neogena (Grunow) Krammer-----------
63Cymbella proxima ReimerB--ialf-es1.0o-m
64Cymbella subcistula KrammerB------1.2o--
65Cymbella sp.-----------
66Cymbopleura amphicephala (Nägeli ex Kützing) KrammerB-st-striind4.6–8.2-----
67Cymbopleura anglica (Lagerstedt) KrammerB--hbind-sx1.2oatsom
68Cymbopleura angustata var. spitsbergensis KrammerB-striind4.9–8.20-1.0o-ot
69Cymbopleura designata (Krammer) BahlsBtempst-strialf6.3–9.0-1.8o-aatsm
70Cymbopleura elliptica Krammer-----------
71Cymbopleura hybrida (Grunow ex Cleve) KrammerP-B--iind8.10-1.2oats-
72Cymbopleura incertiformis Krammer-----------
73Cymbopleura naviculiformis (Auerswald ex Heiberg) KrammerBtempst-striind7.8–6.94-----
74Cymbopleura oblongata var. stenoraphe Krammer-----------
75Cymbopleura subanglica Krammer-----------
76Cymbopleura subapiculata Krammer-----------
77Cymbopleura subcuspidata (Krammer) KrammerP-B-striacf-sx1.0oatsom
78Cymbopleura truncata Krammer-----------
79Cymbopleura tynnii (Krammer) KrammerB----------
80Cymbopleura sp.-----------
81Denticula tenuis KützingB-st-strialf7.42–8.0-----
82Diatoma moniliformis (Kützing) D. M. WilliamsP-Btempst-strialf8.0–8.5-0.4x-o--
83Diatoma vulgaris BoryP-Btempst-strialf6.2–8.9-2.4b-a--
84Diploneis boldtiana CleveB-st-striind------
85Diploneis modica HustedtB----6.58-----
86Diploneis oblongella (Nägeli ex Kützing) A. CleveB-st-striind6.9–8.0-----
87Diploneis oculata (Brébisson) CleveBtempst-strialf7.4–8.2-----
88Diploneis ovalis (Hilse) CleveB-st-strialf6.5–9.0-0.9x-batem
89Diploneis parma CleveBcool-ialf6.6–8.6-----
90Diploneis subovalis CleveBtempst-strhlind------
91Discostella pseudostelligera (Hustedt) Houk and KleePtempst-striind6.32–8.5-2.7a-o--
92Discostella stelligera (Cleve and Grunow) Houk and KleeP-Btempst-striind5.1–9.0-----
93Encyonema auerswaldii RabenhorstB--iind------
94Encyonema elginense (Krammer) D. G. MannBtempst-strhbacf5.5–9.0-----
95Encyonema gaeumannii (F. Meister) KrammerBtempstrhbacf4.6–7.9-----
96Encyonema groenlandica (Foged) Kulikovskiy and Lange-Bertalot-----------
97Encyonema latens (Krasske) D. G. MannB----7.8–8.0-1.0oatsot
98Encyonema lunatum (W. Smith) Van HeurckBtemp--ind4.9–7.8es1.3oatse
99Encyonema minutum (Hilse) D. G. Mann var. minutumBtempst-striind4.9–8.9sx1.5o-bats-
100Encyonema neogracile KrammerP-B---ind6.4---hne-
101Encyonema perpusillum (A. Cleve) D. G. MannP-Btempstrhbind6.1–6.16-----
102Encyonema reichardtii (Krammer) D. G. MannBtempstriind7.6–7.8-1.0oatsot
103Encyonema silesiacum (Bleisch) D. G. MannBtempst-striind6.2–8.6-----
104Encyonema ventricosum (C. Agardh) GrunowB-st-striind6.2–8.0---ate-
105Encyonema vulgare KrammerB-------oatsme
106Encyonema sp.-----------
107Encyonopsis cesatiformis Krammer-----------
108Encyonopsis cesatii (Rabenhorst) KrammerBtempstriind5.7–8.0-1.5o-b--
109Encyonopsis perborealis Krammer-----------
110Entomoneis ornata (Bailey) ReimerB-st-strialf--2.0bhne-
111Eucocconeis alpestris (Brun) Lange-BertalotBtempstrhbind6.35–7.09-----
112Eucocconeis depressa (Cleve) Lange-BertalotB--hbacf--1.0o-ot
113Eucocconeis diluviana (Hustedt) Lange-Bertalot-----------
114Eucocconeis flexella (Kützing) F.MeisterBtempstrmhind7.13–8.10-----
115Eucocconeis laevis (Østrup) Lange-BertalotB-strhbneu7.90sx0.2xatsot
116Eucocconeis leptostriata Lange-Bertalot apud H. Lange-Bertalot and S. I. GenkalB--ineu-sx--ate-
117Eucocconeis quadratarea (Østrup) Lange-BertalotB--iacf--1.0o--
118Eunotia ambivalens Lange-Bertalot and TagliaventiB--iacf--3.9b-p--
119Eunotia arcus EhrenbergBtempst-striacf5.8–6.95sx0.4x-oatsot
120Eunotia bidens EhrenbergP-B,aercoolst-strhbacf--1.0o-ot
121Eunotia bigibboidea Lange-Bertalot and Witkowski-----------
122Eunotia bilunaris (Ehrenberg) SchaarschmidtBtempst-striacf5.0–7.8-----
123Eunotia boreoalpina Lange-Bertalot and Nörpel-SchemppB--hb-------
124Eunotia boreotenuis Nörpel-Schempp and Lange-BertalotB--hb---1.0o-ot
125Eunotia botuliformis F. Wild, Nörpel and Lange-BertalotB--hbacf--1.0o-ot
126Eunotia cantonatii Lange-Bertalot and Tagliaventi-----------
127Eunotia chelonia Nörpel-Schempp, Lange-Bertalot, and MetzeltinB--iacf------
128Eunotia curtagrunowii Nörpel-Schempp and Lange-BertalotP-B--hbacf--0.4x-oatsot
129Eunotia elegans ØstrupP-B-st-strhbacf6.3-0.2xatsot
130Eunotia eurycephala (Grunow) Nörpel-Schempp and Lange-BertalotB--i-------
131Eunotia ewa Lange-Bertalot and Witkowski-----------
132Eunotia faba EhrenbergBtempst-str-alf5.38–7.0--oatsot
133Eunotia flexuosa (Brébisson ex Kützing) KützingBtempst-striacf4.5–7.8-0.4x-o--
134Eunotia fureyae Lange-Bertalot-----------
135Eunotia genuflexa Nörpel-Schempp-----------
136Eunotia groenlandica Nörpel-Schempp and Lange-BertalotB-st-strhbacf3.80-0.6o-x--
137Eunotia incisa W. Smith ex W. GregoryP-Btempst-striacf4.5–7.0--oatsom
138Eunotia islandica ØstrupB--iacf--0.4x-o-ot
139Eunotia julma Lange-Bertalot-----------
140Eunotia major (W. Smith) RabenhorstB-st-strhbacf6.7-1.0o--
141Eunotia meisteri HustedtP-B-striacf4.5–7.2-0.4x-oats-
142Eunotia minor (Kützing) GrunowBtempst-strhbacf4.5–8.2-----
143Eunotia monnieri Lange-Bertalot and Tagliaventi-----------
144Eunotia mucophila (Lange-Bertalot, Nörpel-Schempp, and Alles) Lange-BertalotP-Btempst-strhbacf5.25–6.4-----
145Eunotia naegelii MigulaP-Btempstrhbacf4.5–6.0sx0.5x-oateot
146Eunotia neocompacta var. vixcompacta Lange-Bertalot-----------
147Eunotia paralleladubia Lange-Bertalot and S. Mayama-----------
148Eunotia parapraerupta Lange-Bertalot and Metzeltin-----------
149Eunotia pseudogroenlandica Lange-Bertalot and Tagliaventi-----------
150Eunotia rhomboidea HustedtBtempstrhbacf4.84–6.4-1.0o--
151Eunotia scandiorussica Kulikovskiy, Lange-Bertalot, Genkal, and Witkowski-----------
152Eunotia semicircularis (Ehrenberg) Lange-Bertalot and Metzeltin-----------
153Eunotia septentrionalis ØstrupP-B-strhbacf4.5–7.5-1.0o-ot
154Eunotia subarcuatoides Alles, Nörpel, and Lange-BertalotB-strhbacb6.7-0.4x-o--
155Eunotia subherkiniensis Lange-Bertalot-----------
156Eunotia ursamaioris Lange-Bertalot and Nörpel-SchemppB--hb---1.0o-ot
157Eunotia sp.-----------
158Fallacia crassicostata Lange-Bertalot and Werum-----------
159Fallacia pygmaea (Kützing) Stickle and D. G. MannP-B-st-strmhalf7.4–9.1---ats-
160Fallacia sp.-----------
161Fragilaria aquaplus Lange-Bertalot and S. Ulrich-----------
162Fragilaria capucina DesmazièresP-Btempst-striind6.4–8.9-----
163Fragilaria radians (Kützing) D. M. Williams and RoundP-Bwarmst-strialf7.0–7.5-----
164Fragilaria rumpens (Kützing) G. W. F. CarlsonP-Betermst-striind6.5–8.8-2.0batse
165Fragilaria saxoplanctonica Lange-Bertalot and S. Ulrich-----------
166Fragilaria vaucheriae (Kützing) J. B. PetersenP-B,Eptempst-strialf6.5–8.8-----
167Fragilaria sp.---i-4.9–7.8es--hne-
168Fragilariforma bicapitata (A. Mayer) D. M. Williams and RoundP-B-st-strhbind------
169Fragilariforma constricta (Ehrenberg) D. M. Williams and RoundB-strhbacf4.6–7.0-1.3oatsm
170Fragilariforma mesolepta (Rabenhorst) KharitonovP-B-st-strialf6.3–9.0-1.0o-ot
171Fragilariforma virescens (Ralfs) D. M. Williams and RoundP-Btempst-strhbind4.6–8.2-1.0o-ot
172Frustulia crassinervia (Brébisson ex W. Smith) Lange-Bertalot and KrammerB-strhbacf4.7–7.2sx0.5x-oatsot
173Frustulia erifuga Lange-Bertalot and KrammerBtempstrhbacf5.85–6.49--oatse
174Frustulia krammeri Lange-Bertalot and MetzeltinB---acf-----e
175Frustulia saxonica RabenhorstBtempst-strhbacf4.5–7.2---ate-
176Geissleria davydovae Genkal et Yaruschina-----------
177Genkalia digituloides (Lange-Bertalot) Lange-Bertalot and Kulikovskiy-----------
178Gololobovia obliqua (W. Gregory) Kulikovskiy, Glushchenko, and Kociolek-----------
179Gomphonema acuminatum EhrenbergBtempst-striind6.3–9.5-0.8x-b--
180Gomphonema angusticephalum E. Reichardt and Lange-Bertalot-----------
181Gomphonema brebissonii KützingB-stiind-----m
182Gomphonema capitatum EhrenbergBtempstialf6.9–8.9-1.2o-om
183Gomphonema coronatum EhrenbergB-stiind7.33-----
184Gomphonema gracile EhrenbergBtempst-strialf6.4–8.6-----
185Gomphonema hebridense W. GregoryB---acf6.1-1.0o--
186Gomphonema italicum Kützing-----------
187Gomphonema lagerheimii A. CleveB-strhbacf-----m
188Gomphonema laticollum E. Reichardt-------1.0oatsot
189Gomphonema microcapitatum Kulikovskiy, Kociolek, and Solak-----------
190Gomphonema mihoi Levkov-----------
191Gomphonema minutum f. pachypus Lange-Bertalot and E. Reichardt-----------
192Gomphonema olivaceoides HustedtB-strhbind--1.0o--
193Gomphonema parvulum (Kützing) KützingBtempst-striind4.5–8.6-0.7o-xatsot
194Gomphonema pseudacuminatum Kulikovskiy, Kociolek, and Solak-----------
195Gomphonema truncatum EhrenbergBtempst-striind7.19-2.0b--
196Gomphonema sp.B--i-5.7–7.8sx----
197Gomphosphenia vallei Beauger, C. E. Wetzel, Allain, and Ector-----------
198Gomphosphenia sp.B----------
199Gyrosigma acuminatum (Kützing) RabenhorstBtempst-strialf6.3–9.5-----
200Gyrosigma sp.B----------
201Halamphora hassiaca (Krammer and S. Strecker) Lange-Bertalot-----------
202Handmannia antiqua (W. Smith) Kociolek et KhursevichP-Btemp-hbacf7.25–7.27-1.2o--
203Handmannia comta (Ehrenberg) Kociolek et Khursevich emend. GenkalPtempstialf6.0–7.8-----
204Hantzschia sp.B----------
205Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin, and WitkowskiBtempst-strhlalf6.6–9.5--a-b-me
206Hippodonta hungarica (Grunow) Lange-Bertalot, Metzeltin, and WitkowskiB-st-strhlalf6.9–8.6-----
207Humidophila brekkaensis (J. B. Petersen) R. L. Lowe, Kociolek, J. R. Johansen, Van de Vijver, Lange-Bertalot, and Krammer et KopalovaB-aermhalf------
208Humidophila gallica (W. Smith) Lowe, Kociolek, Q. You, Q. Wang, and StepanekB-st-striind7.60es0.7o-xateom
209Humidophila perpusilla (Grunow) R. L. Lowe, Kociolek, J. R. Johansen, Van de Vijver, Lange-Bertalot, and KopalováBwarmst-striind------
210Humidophila schmassmannii (Hustedt) Buczkó and WojtalBcool--acf-sp0.7o-xatsom
211Humidophila sp.-----------
212Hygropetra balfouriana (Grunow ex Cleve) Krammer and Lange-BertalotB,aertemp-iind6.89–7.60----ot
213Iconella curvula (W. Smith) Ruck and NakovB-strhbacf--2.0b-me
214Iconella linearis (W. Smith) Ruck and NakovP-B-st-striind4.6–9.0-----
215Iconella splendida (Ehrenberg) Ruck and NakovP-B-st-strialf------
216Karayevia laterostrata (Hustedt) BukhtiyarovaBtempst-strhbind6.89–8.1-----
217Kobayasiella parasubtilissima (H. Kobayasi and T. Nagumo) Lange-BertalotBtempstrhbacb5.41-1.5o-b--
218Kobayasiella subtilissima (Cleve) Lange-BertalotBtempst-striacb4.6–7.0-1.6b-oatsme
219Mayamaea disjuncta (Hustedt) J. Y. Li and Y. Z. QiB-striind7.5sp3.0aatehe
220Melosira varians C. AgardhP-Btempst-strhlind5–9-2.4b-a--
221Navicula angusta GrunowB-st-striind7.6–8.2-1.0o--
222Navicula chiarae Lange-Bertalot and Genkal-----8.30---hce-
223Navicula cryptocephala Kützing P-Btempst-striind6.5–8.4-2.4b-a--
224Navicula cryptotenella Lange-BertalotP-Btempst-striind6.5–8.7-----
225Navicula cryptotenelloides Lange-BertalotB--ohalf7.9–8.19-1.0o--
226Navicula mediocostata E. ReichardtB--ohalf-es3.0aatee
227Navicula notha J. H. WallaceB-striacf6.3–7.5-----
228Navicula phyllepta KützingB--hl-------
229Navicula phylleptosoma Lange-BertalotB--mhalf7.7-----
230Navicula radiosa KützingBtempst-striind5–9sx----
231Navicula reinhardtii (Grunow) Grunow-----------
232Navicula rostellata KützingB-st-strialf7.7–8.6-0.7o-xateot
233Navicula tripunctata (O. F. Müller) BoryP-Btempst-strialf7.0–8.6es---e
234Navicula trivialis Lange-BertalotBtempst-strialf7.2–8.1es----
235Navicula viridulacalcis Lange-BertalotB----------
236Navicula wygaschii Lange-Bertalot-----------
237Navicula sp.-----------
238Naviculadicta sp.-----------
239Navigeia paludosa (Hustedt) BukhtiyarovaB-striind8.11sx----
240Navigeia thingvallae (Østrup) BukhtiyarovaB----------
241Neidiopsis wulffii (J. B. Petersen) Lange-Bertalot-----7.80---atsot
242Neidium affine (Ehrenberg) PfitzerBtempst-striind4.5–7.8-----
243Neidium ampliatum (Ehrenberg) KrammerBtempstiind5.2–8.6-----
244Neidium bisulcatum (Lagerstedt) CleveB-st-striind4.9–7.0-1.0o--
245Neidium dubium (Ehenberg) CleveB-strialf------
246Neidium hercynicum Ant. MayerB--iacf------
247Neidium hitchcockii (Ehrenberg) CleveP-B-stIind-es0.6o-xatsot
248Neidium iridis (Ehrenberg) CleveBtempst-strhbind5.1–8.9-----
249Neidium sp.B----4.6–6.9-----
250Nitzschia acicularis (Kützing) W. SmithP-Btempstialf6.8–8.1es1.4o-batsom
251Nitzschia acidoclinata Lange-BertalotBtempstrhbind6.5–8.0-3.6a-batee
252Nitzschia alpina HustedtP-Btempstriacf7.39-1.0o--
253Nitzschia capitellata HustedtBtemp-iind6.9–8.6-3.6a-b-o–e
254Nitzschia commutatoides Lange-Bertalot---hl-------
255Nitzschia dissipata (Kützing) RabenhorstBtempst-strialf6.5–8.5sx1.4o-b--
256Nitzschia fonticola (Grunow) GrunowP-Btempst-strialf6.0–8.9-3.6a-bhne-
257Nitzschia frustulum (Kützing) GrunowP-Btempst-strhlalf6.7–8.8es2.7a-o--
258Nitzschia graciliformis Lange-Bertalot and SimonsenB--ialf-es1.0o--
259Nitzschia gracilis HantzschP-Btempst-striind5.51–8.25-----
260Nitzschia inconspicua GrunowBtempst-strhlalf6.7–8.9-----
261Nitzschia intermedia Hantzsch ex Cleve and GrunowP-Btemp-iind6.6–8.1-----
262Nitzschia linearis W. SmithBtemp-ialf7.1–8.1es1.7b-oateme
263Nitzschia media Hantzsch-----------
264Nitzschia perminuta GrunowP-Btempstrhlalf5.79–8.0-----
265Nitzschia rosenstockii Lange-BertalotB--hl-------
266Nupela impexiformis (Lange-Bertalot) Lange-BertalotB---ind6.8–7.3sx0.5x-oatsot
267Nupela neogracillima Kulikovskiy and Lange-BertalotP-B--iind-----ot
268Nupela silvahercynia (Lange-Bertalot) Lange-BertalotB--i-------
269Nupela tenuicephala (Hustedt) Lange-BertalotB---acf-es----
270Pantocsekiella costei (J. C. Druart and F. Straub) K. T. Kiss and E. Ács-----------
271Pinnularia acoricola HustedtB-st-striacf------
272Pinnularia ammerensis Kulikovskiy, Lange-Bertalot, and Metzeltin-----------
273Pinnularia anglica KrammerB---acf-es2.3b-e
274Pinnularia angustarea Kulikovskiy, Lange-Bertalot, A. Witkovski, and N. I. Dorofeyuk-----------
275Pinnularia brebissonii (Kützing) RabenhorstBtempst-striind--1.0o--
276Pinnularia bottnica KrammerB--hl-------
277Pinnularia brandelii CleveB--hbacf------
278Pinnularia canadensis Krammer-----------
279Pinnularia cuneola E. Reichardt-----------
280Pinnularia decrescens (Grunow) KrammerB-strhbind------
281Pinnularia divergens var. sublinearis Cleve-----------
282Pinnularia eifeliana (Krammer) KrammerB------1.0o--
283Pinnularia grunowii Krammer-----------
284Pinnularia halophila KrammerB--hl---0.2xatsom
285Pinnularia krammeri Metzeltin-----------
286Pinnularia lagerstedtii (Cleve) A. CleveB-aerhbind------
287Pinnularia lailaensis Foged-----------
288Pinnularia macilenta EhrenbergB------0.9x-b--
289Pinnularia microstauron var. rostrata Krammer-----------
290Pinnularia neohalophila Kulikovskiy, Genkal, and Mikheeva-----------
291Pinnularia nodosa (Ehrenberg) W. Smith var. nodosaBtempstriind6.79-0.4x-o--
292Pinnularia nodosa var. percapitata Krammer-----------
293Pinnularia nodosa var. robusta (Foged) KrammerB------0.4x-oatsot
294Pinnularia notabilis KrammerB------0.6o-x--
295Pinnularia oriunda KrammerB--ineu--1.0oatsot
296Pinnularia oriundiformis Krammer-----------
297Pinnularia parvulissima Krammer-----------
298Pinnularia permicrostauron Krammer and Metzeltin-----------
299Pinnularia pluvianiformis Krammer-----------
300Pinnularia rhombarea Krammer-----------
301Pinnularia rupestris HantzschBtempstriacf5.39-----
302Pinnularia septentrionalis KrammerB--iind--1.0o-om
303Pinnularia similiformis KrammerB---acf--1.0o-ot
304Pinnularia spitsbergensis CleveB--hbind----atsot
305Pinnularia stricta Hustedt-----------
306Pinnularia subanglica Krammer-----------
307Pinnularia subrostrata (A. Cleve) A. CleveB--hbacf--1.0o--
308Pinnularia subrupestris KrammerB--hbacf--0.4x-o--
309Pinnularia subundulata ØstrupB---acf--0.3x-ot
310Pinnularia undula (Schumann) KrammerB--iind--1.0o--
311Pinnularia viridis (Nitzsch) EhrenbergP-Btempst-striind5.24–7.1-0.9x-b-ot
312Pinnularia sp.-----4.5–7.8-----
313Placogeia similis (Krasske) BukhtiyarovaB--iind-----e
314Placoneis amphibola (Cleve) E. J. CoxBcoolst-striind------
315Placoneis clementioides (Hustedt) E. J. CoxB--ialf------
316Placoneis elginensis (W. Gregory) E. J. CoxP-B-st-strialf7.0–8.2-----
317Placoneis interglacialis (Hustedt) E. J. CoxB--iind--2.0b--
318Placoneis opportuna (Hustedt) Chudaev and GololobovaB-----es----
319Placoneis sp.-----------
320Planothidium straubianum C. E. Wetzel, Van de Vijver, and L. EctorB-strialf8.0--aatse
321Planothidium sp.-----------
322Pleurosigma elongatum W. SmithP-B--mhalf------
323Praestephanos triporus (Genkal and G. V. Kuzmin) A. Tuji and J.-S. KiP--ialf------
324Psammothidium bioretii (H. Germain) Bukhtiyarova and RoundB-striind6.08–7.9-0.7o-xatsot
325Psammothidium chlidanos (M. H. Hohn and Hellerman) Lange-BertalotB--hbacf7.1–7.9-1.0o-ot
326Psammothidium daonense (Lange-Bertalot) Lange-BertalotBtempstrhbind6.6–8.2--oatsot
327Psammothidium helveticum (Hustedt) Bukhtiyarova and RoundBtempst-strhbalf6.0–7.4es2.4b-aatem
328Psammothidium kryophilum (J. B. Petersen) E. ReichardtP-B-striind8.10sx0.5x-oatsot
329Psammothidium levanderi (Hustedt) Bukhtiyarova and RoundBtempstriind6.6–8.4sx2.0batsom
330Psammothidium marginulatum (Grunow) Bukhtiyarova and RoundBtempst-strhbacf4.6–7.9sx0.2xatsot
331Psammothidium rechtense (Leclercq) Lange-BertalotB-strhbalf--1.0oatsot
332Psammothidium rossii (Hustedt) Bukhtiyarova and RoundB-strhbind--1.0oatsot
333Psammothidium scoticum (R. J. Flower and V. J. Jones) Bukhtiyarova and RoundBtemp---6.42-----
334Psammothidium subatomoides (Hustedt) Bukhtiyarova and RoundP-Btempstrhbacf6.4–8.01sx2.0batsme
335Psammothidium subsalsum (J. B. Petersen) Kulikowskiy, Witkowski, and PlińskiB----------
336Psammothidium ventrale (Krasske) Bukhtiyarova and RoundB-strhbacf7.45-2.0batsom
337Psammothidium sp.-----------
338Pseudostaurosira brevistriata (Grunow) D. M. Williams and RoundP-Btempst-strialf5.2–8.4-2.0bate-
339Pseudostaurosira parasitica (W. Smith) E. MoralesP-Btempst-strialf6.41–8.22-1.0oateot
340Pulchellophycus obsitus (Hustedt) Edlund and M. J. Wynne-----------
341Pulchellophycus sp.-----------
342Reimeria sinuata (W. Gregory) Kociolek and StoermerP-B,aertempst-striind6.6–8.9-----
343Sellaphora bacillum (Ehrenberg) D. G. MannB-st-strialf7–9sx1.5o-batsme
344Sellaphora difficillima (Hustedt) C. E. Wetzel, L. Ector, and D. G. MannBtempstrhbacf7.8-1.0oateom
345Sellaphora insolita (É. Manguin ex Kociolek and B. de Reviers) P. B. Hamilton, and D. Antoniades-----------
346Sellaphora laevissima (Kützing) D. G. MannB-st-striind5.7–8.1-2.0batsom
347Sellaphora vitabunda (Hustedt) D. G. MannB--ialf8.06es1.0oatsom
348Sellaphora sp.B----------
349Simonsenia delognei (Grunow) Lange-BertalotBtempstrohalf7.5–8.1-3.0ahnee
350Skabitschewskia oestrupii (A. Cleve) Kuliskovskiy and Lange-BertalotB-striind7.6-1.0oatsom
351Skabitschewskia peragalloi (Brun and Héribaud) Kuliskovskiy and Lange-BertalotB-striind8.20sx0.4x-oatsom
352Stauroneis amphicephala KützingP-Btempst-striind4.8–8.2sx1.3oatsom
353Stauroneis anceps Ehrenberg P-Btempst-striind4.8–8.2sx1.3oatsom
354Stauroneis gracilis EhrenbergB--Iind5.3--o--
355Stauroneis guslyakovii Genkal and Yarushina-----------
356Stauroneis phoenicenteron (Nitzsch) EhrenbergP-Btempst-striind6.01–8.5-----
357Stauroneis reichardtii Lange-Bertalot, Cavacini, Tagliaventi, and AlfinitoP-Btempst-striind4.8–8.2sx1.3oatsom
358Stauroneis schulzii JouséB--ialf----ats-
359Stauroneis smithii Grunow P-B-st-strialf--1.0o-om
360Stauroneis sp.B------1.5o-bateo–e
361Staurosira sviridae Kulikovskiy, Genkal, and Mikheeva-----------
362Staurosirella lanceolata (Hustedt) E. A. Morales, C. Wetzel, and L. Ector-----------
363Staurosirella pinnata (Ehrenberg) D. M. Williams and RoundP-Btempst-strhlalf6.2–9.3es1.1oatsom
364Stenopterobia heribaudii (Playfair) PlayfairP-B-st----0.4x-o--
365Stephanocyclus meneghinianus (Kützing) Kulikovskiy, Genkal, and KociolekP-Btempst-strhlalf5.5–9.0sp2.8ahnee
366Stephanodiscus hantzschii GrunowPtemp-i-8.0–8.5-----
367Stephanodiscus hashiensis H. Tanaka-----------
368Stephanodiscus minutulus (Kützing) Cleve and MöllerPtempst-strialb6.5–9.0es3.6a-ohnehe
369Stephanodiscus neoastraea Håkansson and Hickel emend. Casper, Scheffler et AugstenPtempst-strialb5.5–9.0es----
370Surirella angusta KützingP-Btempst-strialf6.9–8.9-----
371Surirella librile (Ehrenberg) EhrenbergP-Btempst-strialf8.0---hne-
372Surirella minuta Brébisson ex KützingBtempst-strialf6.9–8.6-----
373Surirella roba LeclercqB-striacf------
374Surirella sp.B--mh--es1.85o-ahne-
375Tabellaria flocculosa (Roth) KützingP-Betermst-striacf4.5–8.0-3.0a--
376Tetracyclus glans (Ehrenberg) F. W. MillsP-Btemp-iacf6.95-1.0x-o-ot
377Thalassiosira pseudonana Hasle and HeimdalPtempst-strhlalf7.4–8.0-2.4b-ahnehe
378Thalassiosira sp.B----------
379Tryblionella angustata W. Smith P-Btempstialf6.86–7.7sx1.5o-batse
380Tryblionella calida (Grunow) D. G. MannP-B--hl-7.8–8.2-2.6a-o-e
381Tryblionella hungarica (Grunow) FrenguelliP-B-st-strmhalf7.0–7.8sp2.9aatee
382Tryblionella littoralis (Grunow) D. G. MannB-st-strehalf-es2.6a-oatse
383Ulnaria acus (Kützing) AboalP-Bwarmst-strialf6.8–8.0es1.85o-aateme
384Ulnaria ulna (Nitzsch) CompèreP-Btempst-strialf5.0–9.5es2.4b-aatee
385Ulnaria sp.-----------
Notes: habitat (P—planktonic, P-B—plankto-benthic, B—benthic); temperature preferences (cool—cool water, temp—temperate, eterm—eurythermic, warm—warm water); oxygenation and streaming (st—standing water, str—streaming water, st-str—low streaming water, aer—aerophiles); pH preference groups (pH) according to Hustedt (1957) [69] (alb—alkalibiontes; alf—alkaliphiles, ind—indifferent; acf—acidophiles; neu—neutrophiles as a part of pH-indifferent taxa); salinity ecological groups according to Hustedt (1938–1939) [70,71] (hb—oligohalobes–halophobes, i—oligohalobes-indifferents, hl—halophiles; mh—mesohalobes, eh—euhalobes); self-purification zone with index of saprobity (x/0.0—xenosaprobe; x-o/0.4—xeno-oligosaprobe; o-x/0.6—oligo-xenosaprobe; x-b/0.8—xeno-betamesosaprobe; o/1.0—oligosaprobe; o-b/1.4—oligo-betamesosaprobe; x-a/0.55—xeno-to-alphamesosaprobe; b-o/1.6—beta-oligosaprobe; o-a/1.8—oligo-alphamesosaprobe; b/2.0—betamesosaprobe; b-a/2.4—beta-alphamesosaprobe; a-o/2.6—alpha-oligosaprobe; b-p/2.8—beta-polysaprobe; a/3.0—alphamesosaprobe; a-p/3.4—alpha-polysaprobe; a-b/3.6—alpha-betamesosaprobe; p-a/4.0—poly-alphamesosaprobe; i/>4.0—i-eusaprobe); organic pollution indicators according Watanabe et al. (1986) [72]: sx—saproxenes; es—eurysaprobes; sp—saprophiles; nitrogen uptake metabolism (Aut-Het) [16]: ats—nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen; ate—nitrogen autotrophic taxa tolerating elevated concentrations of organically bound nitrogen; hne—facultative nitrogen heterotrophic taxa needing periodically elevated concentrations of organically bound nitrogen; hce—obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen; trophic-state indicators [16]: (ot—oligotraphentic; om—oligomesotraphentic; m—mesotraphentic; me—mesoeutraphentic; e—eutraphentic; he—hypereutraphentic; o–e—oligo-to-eutraphentic (hypereutraphentic)).
Table A4. Bioindicator spectrum for diatom communities of 14 studied water bodies in the vicinity of Tiksi Bay, July 2021.
Table A4. Bioindicator spectrum for diatom communities of 14 studied water bodies in the vicinity of Tiksi Bay, July 2021.
Group of IndicatorsLake 1Lake 2Lake 3Lake 4Lake 5Lake 6Lake 7Lake 8Lake 9Lake 10Lake 11Lake 12Lake 13Lake 14
Habitat
B3624443613664242354058215424
P-B171518181234191592226101913
P31124720432121
Temperature
cool11221302010000
temp292924017523024223036123519
eterm223261221121122
warm00210110011021
Oxygen
aer00010010010000
str1492012320111614141512164
st-str282123242052302418294103720
st02142531104723
Salinity
hb147131711381614181814113
i322641301968443225364794826
hl444261232538273
mh01221130014020
eh00000000100000
pH
acb11010103000100
acf179121541312181118141294
ind221926211036222318253183313
alf11817111442221013142852315
alb21001000010000
Watanabe
sx11611931513788155106
es766351610691013197
sp20342512122141
Autotrophy-Heterotrophy
ats179221662922211819287249
ate6458415786109479
hne20102430102171
hce00010000000000
Trophy
ot1671410416151411121411126
om10298415710911162146
m11120104123020
me11332671326143
e238451644646172
o–e01011101000000
he10111000010000
Class of Water Quality
Class 1113644788989664
Class 2211624195382125172732142111
Class 36377713743490135
Class 411322521232141
Class 510000212100020
Note: 0, not found. Abbreviations: habitat (P—planktonic, P-B—plankto-benthic, B—benthic); temperature preferences (cool—cool water, temp—temperate, eterm—eurythermic, warm—warm water); oxygenation and streaming (st—standing water, str—streaming water, st-str—low streaming water, aer—aerophiles); pH preference groups (pH) according to Hustedt (1957) [69] (alb—alkalibiontes; alf—alkaliphiles, ind—indifferent; acf—acidophiles; neu—neutrophiles as a part of pH-indifferent taxa); salinity ecological groups according to Hustedt (1938–1939) [70,71] (hb—oligohalobes–halophobes, i— oligohalobes-indifferents, hl—halophiles; mh—mesohalobes, eh—euhalobes); self-purification zone with index of saprobity (x/0.0—xenosaprobe; x-o/0.4—xeno-oligosaprobe; o-x/0.6—oligo-xenosaprobe; x-b/0.8—xeno-betamesosaprobe; o/1.0—oligosaprobe; o-b/1.4—oligo-betamesosaprobe; x-a/0.55—xeno-to-alphamesosaprobe; b-o/1.6—beta-oligosaprobe; o-a/1.8—oligo-alphamesosaprobe; b/2.0—betamesosaprobe; b-a/2.4—beta-alphamesosaprobe; a-o/2.6—alpha-oligosaprobe; b-p/2.8—beta-polysaprobe; a/3.0—alphamesosaprobe; a-p/3.4—alpha-polysaprobe; a-b/3.6—alpha-betamesosaprobe; p-a/4.0—poly-alphamesosaprobe; i/>4.0—i-eusaprobe); organic pollution indicators according Watanabe et al. (1986) [72]: sx—saproxenes; es—eurysaprobes; sp—saprophiles; nitrogen uptake metabolism (Aut-Het) [16]: ats—nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen; ate—nitrogen-autotrophic taxa, tolerating elevated concentrations of organically bound nitrogen; hne—facultative nitrogen heterotrophic taxa needing periodically elevated concentrations of organically bound nitrogen; hce—obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen; trophic state indicators [16]: (ot—oligotraphentic; om—oligomesotraphentic; m—mesotraphentic; me—mesoeutraphentic; e—eutraphentic; he—hypereutraphentic; o–e—oligo-to-eutraphentic (hypereutraphentic)).

References

  1. Kelly, M.; Bennion, H.; Burgess, A.; Ellis, J.; Juggins, S.; Guthrie, R.; Jamieson, J.; Adriaenssens, V.; Yallop, M. Uncertainty in Ecological Status Assessments of Lakes and Rivers Using Diatoms. Hydrobiologia 2009, 633, 5–15. [Google Scholar] [CrossRef]
  2. Poikane, S.; Kelly, M.; Cantonati, M. Benthic Algal Assessment of Ecological Status in European Lakes and Rivers: Challenges and Opportunities. Sci. Total Env. 2016, 568, 603–613. [Google Scholar] [CrossRef]
  3. Bennion, H.; Sayer, C.D.; Tibby, J.; Carrick, H.J. Diatoms as Indicators of Environmental Change in Shallow Lakes. In The Diatoms: Applications for the Environmental and Earth Sciences; Cambridge University Press: Cambridge, UK, 2010; p. 686. [Google Scholar]
  4. Nõges, P.; Poikane, S.; Cardoso, A.C.; van de Bund, W. Water Framework Directive the Way to Water Ecosystems Sustainability in Europe. LakeLine 2006, 21, 36–43. [Google Scholar]
  5. Hofmann, G.; Werum, M.; Lange-Bertalot, H.; Lange-Bertalot, H. Diatomeen im Süßwasser-Benthos von Mitteleuropa: BestimmungsFlora Kieselalgen für die ökologische Praxis; Über 700 der Häufigsten Arten und Ihre Ökologie; Gantner: Ruggell, Germany, 2011; p. 908. (In German) [Google Scholar]
  6. Charles, D.F.; Kelly, M.G.; Stevenson, R.J.; Poikane, S.; Theroux, S.; Zgrundo, A.; Cantonati, M. Benthic Algae Assessments in the EU and the US: Striving for Consistency in the Face of Great Ecological Diversity. Ecol. Indic. 2021, 121, 107082. [Google Scholar] [CrossRef]
  7. Van Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 1994, 28, 117–133. [Google Scholar] [CrossRef]
  8. Pinseel, E.; Van de Vijver, B.; Kavan, J.; Verleyen, E.; Kopalová, K. Diversity, ecology and community structure of the freshwater littoral diatom flora from Petuniabukta (Spitsbergen). Polar Biol. 2017, 40, 533–551. [Google Scholar] [CrossRef]
  9. Picińska-Fałtynowicz, J. Freshwater benthic diatoms from the south-western part of the Hornsund fiord area, SW Spitsbergen. Polar Res. 1988, 6, 19–34. [Google Scholar] [CrossRef]
  10. Barinova, S.S. An assessment of the state of aquatic ecosystems of Novaya Zemlya Archipelago (Novozemel’skiy reserve, Russia). Int. J. Algae 2000, 2, 62–69. [Google Scholar] [CrossRef]
  11. Barinova, S.; Stenina, A. Diatom diversity and ecological variables in the Arctic lakes of the Kostyanoi Nos Cape (Nenetsky Natural Reserve, Russian North). Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2013, 147, 397–410. [Google Scholar] [CrossRef]
  12. Stenina, A.S. Diatoms (Bacillariophyta) in the Lakes of the East of the Bolshezemelskaya Tundra; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences: Syktyvkar, Russia, 2009; p. 179. (In Russian) [Google Scholar]
  13. Kharitonov, V.G. Diatom algae of fresh water bodies. In Ecology of the Basin of the River Amguema; Institute of the Biological Problems of the North FEB RAS: Vladivostok, Russia, 1993; pp. 47–81. (In Russian) [Google Scholar]
  14. Kharitonov, V.G. Diatoms (Bacillariophyseae) in the Sediments of Three Mountain, Oligotrophic Lakes in the Amguema River Basin (Chukotka). Sib. Ecol. J. 2010, 4, 609–622. (In Russian) [Google Scholar]
  15. Kharitonov, V.G.; Genkal, S.I. Diatoms of Lake Elgygytgyn and Its Environs (Chukotka); SVNTs FEB RAS: Magadan, Russia, 2012; p. 402. (In Russian) [Google Scholar]
  16. Kopyrina, L.; Pshennikova, E.; Barinova, S. Diversity and ecological characteristic of algae and cyanobacteria of thermokarst lakes in Yakutia (Northeastern Russia). Oceanol. Hydrobiol. Stud. 2020, 49, 99–122. [Google Scholar] [CrossRef]
  17. Barinova, S.; Gabyshev, V.; Gabysheva, O. Climate impact of freshwater biodiversity: General patterns in extreme environments of North-Eastern Siberia (Russia). Br. J. Environ. Clim. Change 2014, 4, 423–443. [Google Scholar] [CrossRef]
  18. Barinova, S.; Gabyshev, V.; Boboev, M.; Kukhaleishvili, L.; Bilous, O. Algal Indication of Climatic Gradients. Am. J. Environ. Prot. 2015, 4, 72–77. [Google Scholar] [CrossRef] [Green Version]
  19. Gabyshev, V.; Ivanova, A.; Gabysheva, O. Long-Term Survey of Algae of the Lena Delta Wildlife Reserve including Data on Chemistry of Waters; Institute for Biological Problems of Cryolithozone, SB RAS: Yakutsk, Russia, 2021; Sampling event dataset Version 1.2. [Google Scholar] [CrossRef]
  20. Barinova, S.S.; Gabyshev, V.A.; Ivanova, A.P.; Gabysheva, O.I. Bioindication of the water salinity dynamics by the microalgae communities in the Lena River Delta, Laptev Sea, Russian Arctic. Mar. Biol. J. 2021, 6, 15–28. [Google Scholar] [CrossRef]
  21. Gabyshev, V.; Barinova, S.; Ivanova, A.; Gabysheva, O.; Curtean-Bănăduc, A. The Indicator Role of Algae in Assessing the Organic Pollution in the Lena River Delta, the Russian Arctic. Front. Environ. Sci. 2022, 10, 921819. [Google Scholar] [CrossRef]
  22. Gabysheva, O.I.; Gabyshev, V.A.; Barinova, S. Influence of the Active Layer Thickness of Permafrost in Eastern Siberia on the River Discharge of Nutrients into the Arctic Ocean. Water 2022, 14, 84. [Google Scholar] [CrossRef]
  23. Gabysheva, O.I.; Gabyshev, V.A.; Barinova, S.; Yakshina, I.A.; Pavlov, I.S. Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters. Hydrobiology 2022, 1, 243–251. [Google Scholar] [CrossRef]
  24. Bessudova, A.; Gabyshev, V.; Firsova, A.; Gabysheva, O.; Bukin, Y.; Likhoshway, Y. Diversity variation of silica-scaled chrysophytes related to differences in physicochemical variables in estuaries of rivers in an Arctic watershed. Sustainability 2021, 13, 13768. [Google Scholar] [CrossRef]
  25. Gvozdetsky, N.A.; Mikhailov, N.I. Physical Geography of the USSR (Asian Part), 3rd ed.; Mysl’: Moscow, Russia, 1978; p. 512. (In Russian) [Google Scholar]
  26. Grosswald, M.G.; Spektor, V.B. Glacial landforms of the Tiksi region (western coast of the Buor-Khaya Bay, Northern Yakutia). Geomorfologiya 1993, 1, 72–82. [Google Scholar]
  27. Spektor, V.B.; Shestakova, A.A.; Torgovkin, Y.I. New genetic types of landforms and deposits of the coastal part of the western sector of the Laptev Sea and the Lena River Delta. Arct. Subarct. Nat. Resour. 2021, 26, 81–93. [Google Scholar] [CrossRef]
  28. Konstantinov, P.Y.; Tregubov, O.D.; Zhang, M.; Li, G. Permafrost temperature dynamics over the last 30 years in certain regions of the Eastern sector of the Russian Arctic. Int. J. Appl. Sci. Technol. Integral 2022, 1, 260–267. (In Russian) [Google Scholar] [CrossRef]
  29. Reference Book on the Climate of the USSR. Issue. 24: Yakut ASSR. Part 2: Temperature of Air and Soil/Yakutsk Hydromete-Orological Observatory; Gidrometeoizdat: Leningrad, Russia, 1966; p. 398. (In Russian)
  30. Fedorov, A.N.; Botulu, T.A.; Varlamov, S.P.; Vasiliev, I.S.; Gribanova, S.P.; Dorofeev, I.V.; Klimovskiy, I.V.; Samsonova, V.V.; Soloviev, P.A. Permafrost Landscapes of Yakutia: Explanatory Note to the "Permafrost—Landscape Map of the Yakut ASSR" of Scale 1:2 500,000; GUGK: Novosibirsk, Russia, 1989; p. 176. (In Russian) [Google Scholar]
  31. Semenov, A.D. Guidance on the Chemical Analysis of Surface Waters of the Land; Gidrometeoizdat: Leningrad, Russia, 1977; p. 541. (In Russian) [Google Scholar]
  32. Balonov, I.M. Preparation of diatoms and golden algae for electron microscopy. In Methods for the Study of Biogeocenoses of Inland Waterbodies; Nauka: Moscow, Russia, 1975; pp. 87–89. (In Russian) [Google Scholar]
  33. Lange-Bertalot, H.; Moser, G. Brachysira: Monographie der Gattung; wichtige indicator-species für das Gewässer-Monitoring und Naviculadicta nov. gen.; ein Lösungsvorschlag zu dem Problem Navicula sensu lato onhe Navicula sensu stricto. Bibl. Diatomol. 1994, 29, 1–212. (In German) [Google Scholar]
  34. Krammer, K. Die cymbelloiden Diatomeen. Teil 1. Allgemeines und Encyonema part. Bibl. Diatomol. 1997, 36, 1–382. (In German) [Google Scholar]
  35. Krammer, K. Die cymbelloiden Diatomeen. Teil 2. Encyonema part. Encyonopsis und Cymbellopsis. Bibl. Diatomol. 1997, 7, 1–469. [Google Scholar]
  36. Krammer, K. Pinnularia. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2000; Volume 1, pp. 1–703. [Google Scholar]
  37. Krammer, K. Cymbella. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2002; Volume 3, pp. 1–584. [Google Scholar]
  38. Krammer, K. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2003; Volume 4, pp. 1–530. [Google Scholar]
  39. Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil 1. Naviculaceae. In Die Süsswasserflora von Mitteleuropa; Spektrum Akademischer Verlag: Stuttgart, Germany, 1986; pp. 1–876. [Google Scholar]
  40. Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil 2. Epithemiaceae, Bacillariaceae, Surirellaceae. In Die Süsswasserflora von Mitteleuropa; Spektrum Akademischer Verlag: Stuttgart, Germany, 1988; pp. 1–536. [Google Scholar]
  41. Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiaceae. In Die Süsswasserflora von Mitteleuropa; Ettl, J.H., Gerloff, H., Eds.; Spektrum Akademischer Verlag: Stuttgart, Germany, 1991; bd. 2/3; pp. 1–576. [Google Scholar]
  42. Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil. 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. In Die Süsswasserflora von Mitteleuropa; Gustav Fisher Verlag: Stuttgart, Germany, 1991; pp. 1–437. [Google Scholar]
  43. Lange-Bertalot, H.; Genkal, S.I. Diatoms of Siberia. I. Iconogr. Diatomol. 1999, 6, 7–272. [Google Scholar]
  44. Reichardt, E. Zur revision der gattung Gomphonema. Iconogr. Diatomol. 1999, 8, 1–203. [Google Scholar]
  45. Lange-Bertalot, H. Navicula sensu stricto, 10 genera separated from Navicula sensu lato Frustulia. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2001; Volume 2, pp. 1–526. [Google Scholar]
  46. Werum, M.; Lange-Bertalot, H. Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconogr. Diatomol. 2004, 13, 1–417. [Google Scholar]
  47. Levkov, Z. Amphora sensu lato. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2009; Volume 5, pp. 1–916. [Google Scholar]
  48. Genkal, S.I.; Bondarenko, N.A.; Shchur, L.A. Diatoms of Lakes in the South and North of Eastern Siberia; OAO Rybinsk Press House: Rybinsk, Russia, 2011; p. 72. [Google Scholar]
  49. Lange-Bertalot, H.; Bak, M.; Witkowski, A. Eunotia and some related genera. In Diatoms of Europe; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2011; Volume 6, pp. 1–747. [Google Scholar]
  50. Levkov, Z.; Metzeltin, D.; Pavlov, A. Luticola, Luticolopsis. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2013; Volume 7, pp. 1–697. [Google Scholar]
  51. Levkov, Z.; Mitić-Kopanja, D.; Reichardt, E. The diatom genus Gomphonema from the Republik of Macedonia. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2016; Volume 8, pp. 1–552. [Google Scholar]
  52. Kulikovskiy, M.S.; Glushchtnko, A.M.; Genkal, S.I.; Kuznetsova, I.V. Identification Book of Diatoms from Russia; Filigran: Yaroslavl, Russia, 2016; p. 804. [Google Scholar]
  53. Lange-Bertalot, H.; Hofmann, G.; Werum, M.; Cantonati, M. Freshwater Benthic Diatoms of Central Europe; Koeltz Botanical Books: Schmitten-Oberreifenberg, Germany, 2017; p. 942. [Google Scholar]
  54. Beauger, A.; Allain, E.; Voldoire, O.; Blavignac, C.; Rossi, S.; Wetzel, C.; Ector, L. Gomphosphenia vallei (Bacillariophyta), a new diatom species from a stream in the “Réserve Naturelle Nationale de la Vallée de Chaudefour”, Massif Central (France). Phytotaxa 2022, 542, 167–179. [Google Scholar] [CrossRef]
  55. Guiry, M.D.; Guiry, G.M. AlgaeBase World-Wide Electronic Publication; National University of Ireland: Galway, Ireland. Available online: http://www.algaebase.org (accessed on 24 June 2019).
  56. Barinova, S. Essential and practical bioindication methods and systems for the water quality assessment. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 555588. [Google Scholar] [CrossRef]
  57. Barinova, S.S.; Medvedeva, L.A.; Anissimova, O.V. Diversity of Algal Indicators in Environmental Assessment; Pilies Studio: Tel Aviv, Israel, 2006; p. 498. (In Russian) [Google Scholar]
  58. Barinova, S.S.; Bilous, O.P.; Tsarenko, P.M. Algal Indication of Water Bodies in Ukraine: Methods and Prospects; Publishing House of Haifa University: Haifa, Israel, 2019; p. 367. (In Russian) [Google Scholar]
  59. Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.A.; Ly, A.; Gronau, F.Q.; Smira, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
  60. Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Version 4.5; Microcomputer Power Press: Ithaca, NY, USA, 2002; p. 500. [Google Scholar]
  61. Michelutti, N.; Douglas, M.S.V.; Smol, J.P. Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Glob. Planet Change 2003, 38, 257–271. [Google Scholar] [CrossRef]
  62. Cremer, H.; Bennike, O.; Kansson, L.H.; Hultzsch, N.; Klug, M.; Kobabe, S.; Wagner, B. Hydrology and diatom phytoplankton of high arctic lakes and ponds on Store Koldewey, Northeast Greenland. Int. Rev. Hydrobiol. 2005, 90, 84–99. [Google Scholar] [CrossRef]
  63. Bielczyńska, A. Bioindication on the Basis of Benthic Diatoms: Advantages and Disadvantages of the Polish Phytobenthos Lake Assessment Method (IOJ—the Diatom Index for Lakes)/Bioindykacja Na Podstawie Okrzemek Bentosowych: Mocne i Słabe Strony Polskiej Metody Oceny Jezior Na Podstawie Fitobentosu (IOJ—Indeks Okrzemkowy Jezior). Ochr. Srodowiska I Zasobów Nat. 2015, 26, 48–55. [Google Scholar] [CrossRef] [Green Version]
  64. Kelly, M. Data Rich, Information Poor? Phytobenthos Assessment and the Water Framework Directive. Eur. J. Phycol 2013, 48, 437–450. [Google Scholar] [CrossRef]
  65. Skorobogatova, O.; Yumagulova, E.; Storchak, T.; Barinova, S. Bioindication of the Influence of Oil Production on Sphagnum Bogs in the Khanty-Mansiysk Autonomous Okrug–Yugra, Russia. Diversity 2019, 11, 207. [Google Scholar] [CrossRef] [Green Version]
  66. Snigirova, A.; Bogatova, Y.; Barinova, S. Assessment of River-Sea Interaction in the Danube Nearshore Area (Ukraine) by Bioindicators and Statistical Mapping. Land 2021, 10, 310. [Google Scholar] [CrossRef]
  67. Barinova, S.; Krupa, E.; Khitrova, Y. Phytoplankton Diversity and Bioindication of the Lakes in the Burabay National Natural Park, Northern Kazakhstan. Ecologies 2023, 4, 242–268. [Google Scholar] [CrossRef]
  68. Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef]
  69. Hustedt, F. Die Diatomeenflora des Flußsystems der Weser im Gebiet der Hansestadt Bremen. Abh. Nat. Ver. Zu Brem. 1957, 34, 181–440. [Google Scholar]
  70. Hustedt, F. Systematisch und Ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra; Archiv für Hydrobiologie, Suppl.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1938; Volume 15, pp. 131–177, 393–506, 638–790. [Google Scholar]
  71. Hustedt, F. Systematisch und Ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra; Archiv für Hydrobiologie, Suppl.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1939; Volume 16, pp. 1–155, 274–394. [Google Scholar]
  72. Watanabe, T.; Asai, K.; Houki, A. Numerical estimation of organic pollution of flowing water by using the epilithic diatom assemblage—Diatom Assemblage Index (DAIpo). Sci. Total Environ. 1986, 55, 209–218. [Google Scholar] [CrossRef]
Figure 1. Sampling points on the studied water bodies in July 2021 with a wind rose. 1–14 are numbers of sampling points according to the Table 1.
Figure 1. Sampling points on the studied water bodies in July 2021 with a wind rose. 1–14 are numbers of sampling points according to the Table 1.
Water 15 01533 g001
Figure 2. Bioindicator distributions in the 14 studied water bodies: (a) habitat preferences (P—planktonic, P-B—plankto-benthic, B—benthic); (b) temperature (cool—cool water, temp—temperate, eterm—eurythermic, warm—warm water); (c) oxygen (st—standing water, str—streaming water, st-str—low streaming water, aer—aerophiles); (d) salinity (hb—oligohalobes–halophobes, i— oligohalobes–indifferents, hl—halophiles; mh—mesohalobes, eh—euhalobes). Ecological groups in each figure are placed in ascending order of the environmental parameter.
Figure 2. Bioindicator distributions in the 14 studied water bodies: (a) habitat preferences (P—planktonic, P-B—plankto-benthic, B—benthic); (b) temperature (cool—cool water, temp—temperate, eterm—eurythermic, warm—warm water); (c) oxygen (st—standing water, str—streaming water, st-str—low streaming water, aer—aerophiles); (d) salinity (hb—oligohalobes–halophobes, i— oligohalobes–indifferents, hl—halophiles; mh—mesohalobes, eh—euhalobes). Ecological groups in each figure are placed in ascending order of the environmental parameter.
Water 15 01533 g002
Figure 3. Bioindicator distributions in the 14 studied water bodies: (a) pH (alb—alkalibiontes; alf—alkaliphiles, ind—indifferent; acf—acidophiles; acb—acidobiontes); (b) nutrition type (ats—nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen; ate—nitrogen autotrophic taxa tolerating elevated concentrations of organically bound nitrogen; hne—facultative nitrogen heterotrophic taxa needing periodically elevated concentrations of organically bound nitrogen; hce—obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen); (c) trophic state (ot—oligotraphentic; om—oligomesotraphentic; m—mesotraphentic; me—mesoeutraphentic; e—eutraphentic; he—hypereutraphentic; o–e—oligo-to-eutraphentic (hypereutraphentic)); (d); class of water quality: 1–5.
Figure 3. Bioindicator distributions in the 14 studied water bodies: (a) pH (alb—alkalibiontes; alf—alkaliphiles, ind—indifferent; acf—acidophiles; acb—acidobiontes); (b) nutrition type (ats—nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen; ate—nitrogen autotrophic taxa tolerating elevated concentrations of organically bound nitrogen; hne—facultative nitrogen heterotrophic taxa needing periodically elevated concentrations of organically bound nitrogen; hce—obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen); (c) trophic state (ot—oligotraphentic; om—oligomesotraphentic; m—mesotraphentic; me—mesoeutraphentic; e—eutraphentic; he—hypereutraphentic; o–e—oligo-to-eutraphentic (hypereutraphentic)); (d); class of water quality: 1–5.
Water 15 01533 g003
Figure 4. JASP Network plot for the 11 studied small water bodies (p < 0.5), based on the bottom of Appendix A Table A4.
Figure 4. JASP Network plot for the 11 studied small water bodies (p < 0.5), based on the bottom of Appendix A Table A4.
Water 15 01533 g004
Figure 5. RDA triplot for species indicators and environmental variables in the 11 studied lakes based on the data from Table 1 and Appendix A Table A1 and Table A4.
Figure 5. RDA triplot for species indicators and environmental variables in the 11 studied lakes based on the data from Table 1 and Appendix A Table A1 and Table A4.
Water 15 01533 g005
Figure 6. Statistical maps of environmental variables in the 11 studied water bodies: (a) altitude; (b) oxygen; (c) pH; (d) TDS; (e) chlorides; (f) sulfates.
Figure 6. Statistical maps of environmental variables in the 11 studied water bodies: (a) altitude; (b) oxygen; (c) pH; (d) TDS; (e) chlorides; (f) sulfates.
Water 15 01533 g006
Figure 7. Statistical maps of environmental variables in the 11 studied water bodies: (a) water temperature; (b) water color; (c) BOD5; (d) N-NO3; (e) total P; (f) total Fe.
Figure 7. Statistical maps of environmental variables in the 11 studied water bodies: (a) water temperature; (b) water color; (c) BOD5; (d) N-NO3; (e) total P; (f) total Fe.
Water 15 01533 g007
Figure 8. Statistical maps of species richness and species per area index in the 14 studied water bodies: (a) no. of species; (b) number species per area of the lake.
Figure 8. Statistical maps of species richness and species per area index in the 14 studied water bodies: (a) no. of species; (b) number species per area of the lake.
Water 15 01533 g008
Figure 9. Statistical maps of bioindicator distributions in the 14 studied water bodies: (a) acidophiles (acf); (b) cool-water indicators (cool); (c) oligohalobes-indifferents (i); (d) organic pollution indicators of Class 2’s water quality; (e) Watanabe indicators of low organic pollution, saproxenes (sx); (f) nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen (ats).
Figure 9. Statistical maps of bioindicator distributions in the 14 studied water bodies: (a) acidophiles (acf); (b) cool-water indicators (cool); (c) oligohalobes-indifferents (i); (d) organic pollution indicators of Class 2’s water quality; (e) Watanabe indicators of low organic pollution, saproxenes (sx); (f) nitrogen autotrophic taxa tolerating very small concentrations of organically bound nitrogen (ats).
Water 15 01533 g009
Figure 10. Statistical maps of bioindicator distributions in the 14 studied water bodies: (a) hypertrophic (he); (b) from oligo-to-eutrophic (o–e); (c) obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen (hce).
Figure 10. Statistical maps of bioindicator distributions in the 14 studied water bodies: (a) hypertrophic (he); (b) from oligo-to-eutrophic (o–e); (c) obligate nitrogen heterotrophic taxa needing continuously elevated concentrations of organically bound nitrogen (hce).
Water 15 01533 g010
Table 1. Sampling station geographical coordinates and parameters.
Table 1. Sampling station geographical coordinates and parameters.
No of StationWater Body NameSampling DateAltitude, m a.s.l.Lake Surface Area, km2Coastline Length, mNo of SpeciesSp./AreaNorthEast
1Lake 13 July 2021250.0751618.426688071°44′44″128°43′12″
2Lake 23 July 2021660.038894.5662163271°44′12″128°41′37″
3Lake 33 July 20211090.031763.2976245271°43′31″128°38′31″
4Lake 43 July 2021380.008359.7672900071°43′48″128°42′35″
5Lake 53 July 2021−40.0671188.513349371°43′45″128°44′36″
6Lake 64 July 2021760.042902.78137326271°41′10″128°36′50″
7Lake 74 July 2021760.5865716.747512871°40′52″128°37′11″
8Lake puddle 84 July 202155--69-71°40′26″128°41′21″
9Lake 94 July 2021540.4863167.265912171°40′10″128°43′27″
10Lake 104 July 2021520.0771153.8585110471°35′56″128°51′70″
11Lake 116 July 2021380.1241800.3611794471°34′33″128°45′51″
12Mochezina 126 July 2021105--43-71°33′36″128°40′26″
13Lake 136 July 2021850.1581639.889660871°33′17″128°38′51″
14Lake 146 July 20211540.023712.8550217471°32′34″128°34′57″
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Barinova, S.; Gabyshev, V.; Genkal, S.; Gabysheva, O. Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic. Water 2023, 15, 1533. https://doi.org/10.3390/w15081533

AMA Style

Barinova S, Gabyshev V, Genkal S, Gabysheva O. Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic. Water. 2023; 15(8):1533. https://doi.org/10.3390/w15081533

Chicago/Turabian Style

Barinova, Sophia, Viktor Gabyshev, Sergey Genkal, and Olga Gabysheva. 2023. "Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic" Water 15, no. 8: 1533. https://doi.org/10.3390/w15081533

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop