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Guarded impredicative polymorphism

ANONYMOUS AUTHOR(S)

The design space for type systems that support impredicative instantiation is extremely complicated. One
needs to strike a balance between expressiveness, simplicity for both the end programmer and the type system
implementor, and how easily the system can be integrated with other advanced type system concepts. In this
paper, we propose a new point in the design space, which we call guarded impredicativity. Its key idea is that
impredicative instantiation in an application is allowed for type variables that occur under a type constructor.
The resulting type system has a clean declarative specification — making it easy for programmers to predict
what will type and what will not —, allows for a smooth integration with GHC’s OutsideIn(X) constraint
solving framework, while giving up very little in terms of expressiveness compared to systems like HMF,
HML, FPH and MLF. We give a sound and complete inference algorithm, and prove a principal type property
for our system.
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1 INTRODUCTION
Type inference for impredicative polymorphism is a deep, deep swamp. The literature is crowded
with corpses (including several of our own): type systems for impredicative polymorphism that
never quite worked well enough to be deployed in a production compiler [Botlan and Rémy 2003;
Leijen 2008, 2009; Vytiniotis et al. 2006, 2008]. Either the system was too complicated for users to
predict its behaviour, or it was too complicated to implement, or sometimes both.

Yet it is tantalising: what is wrong with the type [∀a. a→ a], a list of polymorphic functions? If
we have xs :: [∀a. a→ a], why can’t we write (head xs)? Not every programmer wants such types
but, when they do, it is very annoying that they are disallowed, apparently for obscure technical
reasons. That is why we keep trying.
So what is the problem? The difficulty is that to accept (head xs) we must instantiate the type

variable of head’s type with a polymorphic type. More precisely, since head :: ∀ p. [p ] → p, we
must instantiate p with (∀a. a→ a). This instantiation seems deceptively simple, but in practice
it is extremely hard to combine with type inference. We respond to this challenge by making the
following contributions:
• Every attempt to combine type inference with impredicativity involves a design trade-off
between complexity, expressiveness, and annotation burden. Our key contribution is a new
trade-off, which we call guarded instantiation or GI (Section 2).
GI is simple: simple for the programmer to understand (Section 2.2-2.4), simple in its declara-
tive specification and metatheory (Section 3); and simple in its implementation (Section 4).
We do not extend the syntax of (System F) types in order to provide a specification of the type
system (unlike previous work [Botlan and Rémy 2003; Leijen 2009; Vytiniotis et al. 2008]),
nor do we introduce new forms of annotations [Russo and Vytiniotis 2009] or side-conditions
that require principal types [Leijen 2008].
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1:2 Anon.

head :: ∀p. [p ] → p
tail :: ∀p. [p ] → [p ]
[ ] :: ∀p. [p ]
(:) :: ∀p. p→ [p ] → [p ]
single :: ∀p. p→ [p ]
(++) :: ∀p. [p ] → [p ] → [p ]
length :: ∀p. [p ] → Int
map :: ∀p q. (p→ q) → [p ] → [q]
ids :: [∀a. a→ a]

id :: ∀a. a→ a
inc :: Int → Int
twice :: ∀a. (a→ a) → a→ a
choose :: ∀a. a→ a→ a
poly :: (∀a. a→ a) → (Int,Bool)
auto :: (∀a. a→ a) → (∀a. a→ a)
app :: ∀a b. (a→ b) → a→ b
revapp :: ∀a b. a→ (a→ b) → b

runST :: (∀ s. ST s v) → v
argST :: ∀ s. ST s Int

Fig. 1. Type signatures for functions used in the text

• Despite GI’s relative simplicity, it accepts without annotation particularly celebrated and
practically-important examples, such as runST $ e (Figure 2).
• We give a declarative type system for GI for a small core language, highlighting the key ideas
of our system (Section 3). Then we show simple extensions to handle a more full-fledged
language, including type annotations (Section 3.3), let bindings, do notation, and pattern
matching (Section 3.4). The system has a notion of principal type akin to Hindley-Milner
type systems, that is, existence of a monomorphic substitution mediating between types.
In particular, impredicativity is never guessed in GI (Section 3.6). The resulting system can
express any System F program, as we show in Figure 8.
• We provide a sound and complete inference algorithm (Section 4) for GI, based on constraints.
The type inference algorithm is a modest extension of the constraint-based algorithm already
used by GHC, which is already based in constraints. Type-correct programs can easily be
elaborated into System FC, GHC’s intermediate language, without extensions. Our inference
algorithm scales readily to handle GADTs and type classes, as we show in Section 5. Higher
kinds, type-level functions and other type system features pose no additional problem.
Moreover, as we discuss in Section 6, we can reduce the annotation burden by relaxing the
guardedness conditions during solving.
• We provide a prototype implementation of the whole system, integrated with Haskell’s type
classes.

Type inference for impredicativity is dense with related work, as we discuss in Section 7. A small
but useful contribution to a dense field is Figure 2, which presents key examples from the literature
and shows how each major system behaves on that example.

2 THE KEY IDEA: INTUITION AND EXAMPLES
We begin with an informal introduction to GI, which we make fully precise in Section 3. In this
discussion we make use of functions defined in Figure 1.

2.1 Exploiting the easy case
What is hard about typing (head ids)? Nothing! Since the type variable p appears under a list
type constructor in head’s type, and we know the type of ids, it is plain as a pikestaff that we
must instantiate p := ∀a. a→ a. The difficulty comes when we have a “naked” or “un-guarded”
type variable in the function type, such as single :: ∀p. p→ [p ]. Now if we examine (single id), it

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Guarded impredicative polymorphism 1:3

is not clear whether we should instantiate p with ∀ a. a → a, or with Int → Int, or some other
monomorphic type. In fact, (single id) does not have a most general type. It has both of these two
incomparable types ∀a. [a→ a] and [∀a. a→ a]. To make things worse (single id) is a perfectly
typeable Hindley-Milner program (with the former type) so we must allow this type. But to support
impredicativity, we must also allow the latter. But under which conditions? This is clearly a hard
case for type inference because it requires information from the context. In GI our approach is to
exploit the easy case and turn the hard case to easy by requiring type annotations; finally when
annotations are not present we will fall back to monomorphic instantiation. We hope thereby to
get 90% of the joy for 10% of the pain. Specifically:
• We focus on n-ary applications (f e1...en). It is more conventional to deal with binary applica-
tions, but in fact n-ary applications (unencumbered with intervening let or case constructs)
are wildly dominant in practice, and we can get much better typing by treating the application
all at once.
• For the choices of impredicative instantiation, we accept a particular information flow in an
n-ary call: start with a function with a known type; guide its instantiation by the types of
its explicitly-supplied arguments; and do not attempt to use the context of the call to guide
instantiation.
• We instantiate a function with a polymorphic type (i.e. impredicatively) only if the polymor-
phism is “guarded”, either in the type of the function (as we saw with (head xs) above), or
the type of the argument.

What does this last bullet mean? Consider the call (:) id ids (see Figure 1 for type signatures). Here
the variable p in (:)’s type appears under a list type constructor in the second argument, so its
instantiation is fixed by the second argument ids. All is good.

But what if we had a partially-applied call (:) id? Now p does not appear guarded (under a type
constructor) in the first argument of (:)’s type. And indeed, it is not immediately clear whether
to instantiate p with ∀a. a → a, or Int → Int, etc; it is like the (single id) case. We do not reject
this program, of course; rather we just insist that p is instantiated with a monotype. So for us, the
notion of “guardedness” clearly involves the number of arguments supplied in an n-ary call.

Similarly, consider the callmap poly ids. Here, p (inmap’s type) appears under a type constructor
in the second argument of map, so this application is fine despite the polymorphism in poly’s
type. What about the partially-applied call (map poly)? In GI that too is OK, because we treat (→)
as invariant, like any other type constructor. This occasionally means that you need to do some
eta-expansion (Section 3.2), but it makes more type variables guarded, and that is very worthwhile.
But a call of map applied to no arguments (for example, it might be passed as an argument to
another function) cannot be instantiated impredicatively.

Up to now we have spoken of guardedness as a property of the function’s type, given the number
of arguments to which it is applied. However, in GI guardedness is not only a property of the
type of the function; it also involves the types of its arguments. Consider the call single xs, where
xs :: [∀a. a→ a]. Now there is no doubt at what type to instantiate single ::∀p. p→ [p ]! It must be
instantiated with p := [∀a. a→ a]. Why is there no doubt? Again because the scary polymorphic
type appears under a list constructor.

2.2 A general rule for n-ary applications
Here is the general rule:

Rule 1: When instantiating a type at an n-ary call, a type variable may only be assigned
a polymorphic type σ if, in the instantiated type, σ appears under a type constructor in
one or more of the supplied arguments.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1:4 Anon.

This rule is carefully crafted. To illustrate, consider the examples (again, consult Figure 1 for the
types):
• (map poly) is OK because, after instantiation, map’s type becomes ((∀ a. a → a) →
(Int,Bool)) → [∀ a. a → a] → [(Int,Bool)]. The instantiating type (∀ a. a → a) appears
under a type constructor of one of the supplied arguments (poly in this case).
• (single ids) is OK because, after instantiation, single’s type becomes [∀ a. a → a] →
[[∀ a. a → a]]. The instantiating type appears under a list type constructor in one of
the supplied arguments, namely ids.
• (id poly (λx . x)) is a tricky one. Here id is applied to two arguments although its type,
∀ a. a → a, apparently only has one; moreover the type of id’s second argument must
be polymorphic, and the (λx . x) must be generalised to match. But Rule 1 says that this
application is OK: in the instantiated type of id, the forall appears under an arrow type, in
the type of the first argument.

Rule 1 is still informal (which we remedy in Section 3) but it is very helpful to have a rule of thumb
to explain to a programmer what will and will not work.

2.3 Ignoring the context of a call
Notice that Rule 1 takes no account of the context of the call. For example, consider ids ++ single id.
Here we append two lists, so we know that the result of (single id) must be [∀a. a→ a], and you
might think that would be enough to fix the instantiation of single. But not in GI! The swamp
beckons, and we stay on dry land.
Moreover, Rule 1 allows the programmer to understand impredicativity in a simple bottom-up

way. For example, consider the well-typed expression (map head (single ids)) (Figure 2)? In our
type system, the types for head and single ids are determined, in fact, instantiated, independently,
so we never need to consider the interaction between the two arguments. This modularity pays off
in the metatheory too.
There is a price to pay, however. As a degenerate case, a function application without any

arguments – that is, a variable – may only instantiate fully monomorphically – no polymorphism,
even if it appears under a type constructor. Thus, the empty list constructor [ ] :: ∀a. [a] cannot be
assigned a type [∀a. a→ a]. We explore how to allow more programs in Section 6, and we also
introduce annotations to cover the remaining cases.

2.4 Lambdas
In common with many other approaches to impredicativity, we take a conservative position
on lambda-bound variables. Consider g (λf . (f ’x’, f True)), where g :: ((∀ a. a → a) →
(Char,Bool)) → Int. Since g can only be applied to a function whose argument is itself poly-
morphic, you could imagine that information being propagated to f and so the program could be
accepted. But, in common with every other system we know, we reject all programs that require a
lambda-bound variable to be polymorphic, unless it is explicitly annotated:

Rule 2: Every lambda abstraction whose argument is polymorphic must be annotated. If
is it not annotated, the bound variable can only have a fully monomorphic type.

By a “fully monomorphic type” we mean “no foralls anywhere”. Nothing about guardedness here!
Nevertheless, in Section 6 we explore a way to alleviate some of the burden for the programmer,
for cases where the argument type, albeit polymorphic, can be inferred from its usage in the body.

While Rule 2 deals with the arguments to lambdas, it says nothing about the return type. To get
a polymorphic return type, an annotation needs to be provided. For example, for (∀a. a→ a). x x,
GI infers the type (∀a. a → a) → b → b, and not (∀a. a → a) → (∀a. a → a). To get the latter

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Guarded impredicative polymorphism 1:5

type, we have to write (∀a. a→ a). (x x :: ∀a. a→ a) instead. (Note that this example also shows
up in Figure 2 as auto.)

2.5 Expressiveness
By treating n-ary applications as a whole, and taking guardedness from both the function type
and the argument types, we can infer impredicative instantiations in many practically-useful
situations. We summarise a collection of examples culled from the literature in Figure 2. This table
also compares our system with others, but we defer discussion of related work to Section 7.

One example is the function ($) :: (a→ b) → a→ b. Haskellers use this function all the time to
remove parentheses in their code, as in (runST $ do { ... }) (the type of runST is given in Figure 1).
This call absolutely requires impredicative instantiation of the variable a in the type of ($). It is so
annoying to reject this program that GHC implements a special, built-in typing rule for f $ x. Of
course, that is horribly non-modular: if the programmer re-defines another version of ($), even
with the same type, some programs cease to type check. In GI both type variables appear under the
(→) constructor, so impredicative instantiation is allowed.

The lack of support for impredicative types sometimes forces programmers to define new types
as a work around. Consider the following from Haskell’s lens library1:

type Lens s t a b = ∀ f . Functor f ⇒ (a→ f b) → s→ f t

Because Lens is a polymorphic type, forming a list of lenses [Lens s t a b] is illegal in Haskell,
because you cannot instantiate the list constructor (:) at a polymorphic type. So programmers have
to resort to additional wrapping and unwrapping

newtype ReifiedLens s t a b = Lens { runLens :: Lens s t a b}

Now you can build a list of reified lenses, of type [ReifiedLens s t a b], but doing so is tiresome,
because it requires many explicit conversions between Lens and ReifiedLens. It would be much
better if Lens can be treated as a first-class type, and that is exactly what impredicativity allows.

3 DECLARATIVE SPECIFICATION
We first present a systematic description of the declarative specification of GI. We use the term
declarative in the sense of not syntax-directed. After we have proven soundness and completeness
for the constraint-based variant, the programmer can take this declarative specification – easier
to understand but without a direct inference algorithm – as a base to understand when and why
annotations are needed in their programs.

3.1 Syntax
The syntax of the core term language, for our initial discussion, is given in Figure 3. The language
has some distinctive features. First, as discussed in Section 2, we deal with n-ary applications instead
of binary ones. A lone term variable is treated as 0-ary application. Because of Rule 2 (Section 2.4),
we provide explicitly-annotated lambda abstractions, λ(x ::σ ). e , to support lambdas whose bound
variable must have a polymorphic type.

Types (Figure 3) are classified by three “sorts”, u, t, and m:
• Polymorphic types σ ,ϕ, of sort u, have unrestricted polymorphism.
• Top-level monomorphic types, µ,η, of sort t, have no polymorphism at the top level, but
permit arbitrary nested polymorphic types under a type constructor.

1https://hackage.haskell.org/package/lens-4.15.3/docs/Control-Lens-Reified.html
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1:6 Anon.

GI GI MLF HMF FPH HML
decl. spec. relaxed

polymorphic instantiation: given f :: ∀a. (a→ a) → [a] → a
const2 = λx y. y ✓ ✓ ✓ ✓ ✓ ✓
MLF infers (b ⩾ ∀c. c → c) ⇒ a→ b, whereas GI infers a→ b→ b.
choose id ✓ ✓ ✓ ✓ ✓
MLF/HML infer (a ⩾ ∀b. b→ b) ⇒ a→ a, whereas FPH/GI infer (a→ a) → a→ a.
choose [ ] ids No ✓ ✓ ✓ ✓ ✓
GI needs an annotation on [ ] :: [∀a. a→ a].
auto = λ(x :: ∀a. a→ a). x x ✓ ✓ ✓ No ✓ ✓
MLF infers (∀a. a→ a) → (∀a. a→ a), whereas GI infers (∀a. a→ a) → b→ b.
id auto ✓ ✓ ✓ ✓ ✓ ✓
choose id auto No No ✓ No No ✓
Relaxed GI accepts the version with auto :: (∀a. a→ a) → (∀a. a→ a).
f (choose id) ids No ✓ ✓ No ✓ ✓
GI needs an annotation on id :: (∀a. a→ a) → (∀a. a→ a) in the previous two examples.
poly id ✓ ✓ ✓ ✓ ✓ ✓
poly (λx . x) ✓ ✓ ✓ ✓ ✓ ✓
id poly (λx . x) ✓ ✓ ✓ ✓ ✓ ✓
inference of polymorphic arguments
λf . (f 1, f True) No No No No No No
All systems require an annotation on f :: ∀a. a→ a.
λxs. poly (head xs) No No ✓ No No No
All systems except for MLF require an annotation on xs :: [∀a. a→ a].
functions operating on polymorphic lists: given g :: ∀a. [a] → [a] → a
length ids ✓ ✓ ✓ ✓ ✓ ✓
tail ids ✓ ✓ ✓ ✓ ✓ ✓
head ids ✓ ✓ ✓ ✓ ✓ ✓
single id ✓ ✓ ✓ ✓ ✓ ✓
id : ids ✓ ✓ ✓ No ✓ ✓
(λx . x) : ids ✓ ✓ ✓ No ✓ ✓
single inc ++ single id ✓ ✓ ✓ ✓ ✓ ✓
g (single id) ids No No ✓ No ✓ ✓
map poly (single id) No No ✓ ✓ ✓ ✓
GI needs an annotation on single id :: [∀a. a→ a] in the two previous examples.
map head (single ids) ✓ ✓ ✓ ✓ ✓ ✓
application functions
app poly id ✓ ✓ ✓ ✓ ✓ ✓
revapp poly id ✓ ✓ ✓ ✓ ✓ ✓
runST argST ✓ ✓ ✓ ✓ ✓ ✓
app runST argST ✓ ✓ ✓ ✓ ✓ ✓
revapp runST argST ✓ ✓ ✓ ✓ ✓ ✓
η-expansion: given h :: Int → ∀a. a→ a, k :: ∀a. a→ [a] → a, lst :: [∀a. Int → a→ a],
k h lst No No No No No No
k (λx . h x) lst ✓ ✓ ✓ No ✓ ✓

Fig. 2. Comparison of type systems (Figure 1 gives the types of the functions mentioned)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Guarded impredicative polymorphism 1:7

Skolem / rigid variables V ∋ a,b, c, . . .
Type constructors T ∋ →, T, S, . . .
Fully monomorphic types τ F a | T τ
Top-level monomorphic types µ,η F a | T σ
Polymorphic types σ ,ϕ F ∀a. µ a may be empty, a ⊆ ftv(µ)
Term variables ∋ x ,y
Heads h F x | e
Expressions / terms e F h e1 . . . en | λx .e | λ(x :: σ ).e
Environments Γ F ϵ | Γ,x : σ
Substitutions θ ,φ,π F [a 7→ σ ]
Sorts of variables s F u | t | m Sorts form a lattice, m ⊏ t ⊏ u
Sort assignment ∆ F [a 7→ s]
Free type variables ftv(σ ) = free type variables of σ

Fig. 3. Syntax of the language

σ ⊢ a guarded

a < b µ ⊢ a guarded

∀b . µ ⊢ a guarded

a ∈ ftv(ϕ)
Tϕ ⊢ a guarded

σ ▷n
s ∆

µ ▷0
s [ftv(µ) 7→ s]

µ ▷n
s ∆

∀a. µ ▷n
s ∆\a

σ2 ▷n−1
s ∆

σ1 → σ2 ▷n
s ∆ ⊔ [a 7→ if σ1 ⊢ a guarded then u else t | a ∈ ftv(σ1)]

⊢ σ : s

⊢ σ : u ⊢ µ : t ⊢ τ : m

θ respects ∆

for all a ∈ dom(θ ), ⊢ θ (a) : ∆(a)
θ respects ∆

Fig. 4. Definitions related to guardedness

• Fully-monomorphic types, τ , of sort m, have no trace of polymorphism. Fully monomorphic
types correspond to monotypes in the Hindley-Milner tradition. These are the only types
which can be assigned to un-annotated lambda-bound variables. We extend this notion to
substitutions, and sometimes speak of fully monomorphic substitution to mean that the
image of the substitution contains only types of that sort.

For a substitution θ , the image of a type variable a is denoted by θ (a), and similarly for sort
assignments. We denote the application of a substitution to, e.g., a type scheme, or an environment,
by juxtaposition; the semantics is as you would expect.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Γ ⊢h e : σ
x : σ ∈ Γ VarHead
Γ ⊢h x : σ

e not variable or application Γ ⊢ e : σ
ExprHead

Γ ⊢h e : σ

Γ ⊢arg e : σ

Γ ⊢ e : σ b fresh σ ⩽0
m [a 7→ b]µ

ArgGen
Γ ⊢arg e : ∀a. µ

σ ⩽n
s ϕ1, . . . ,ϕn , µ

InstMono
µ ⩽0

s µ

n ⩾ 1 ϕ2 ⩽n−1
s σ2, . . . ,σn , µ InstArrow

ϕ1 → ϕ2 ⩽n
s ϕ1,σ2, . . . ,σn , µ

µ ▷n
s ∆ θ respects ∆ θµ ⩽n

s σ1, . . . ,σn ,η InstPoly∀a. µ ⩽n
s σ1, . . . ,σn ,η

Γ ⊢ e : σ
Γ,x : τ ⊢ e : σ

Abs
Γ ⊢ λx . e : τ → σ

Γ,x : ϕ ⊢ e : σ
AnnAbs

Γ ⊢ λ(x :: ϕ). e : ϕ → σ

Γ ⊢h h : ϕ ϕ ⩽n
m σ1, . . . ,σn , µ Γ ⊢arg e1 : σ1 . . . Γ ⊢arg en : σn App

Γ ⊢ h e1 . . . en : µ

Fig. 5. Declarative type system

The definitions related to the guardedness requirement are given in Figure 4. Given an n-ary
application, the judgment σ ▷n

s ∆ classifies the free type variables of σ . Specifically, ∆ maps each
variable a to the sort of types that are allowed to instantiate a:

• If a appears under a type constructor (i.e. guarded) in at least one of the first n arguments of
σ , then a may be instantiated by an unrestricted type ϕ.
• If a appears in one of the first n arguments of σ , a may be instantiated by a top-level
monomorphic type µ.
• If a appears in the result type of σ , after stripping off n arguments, then a may be instantiated
by a type of sort s.

We combine information from multiple occurrences with ⊔, the least upper bound of the (trivial)
sort lattice in Figure 3; for example if a variable appear both unrestricted and monomorphically
we can treat it as unrestricted. Using the ▷n

s judgment, Figure 4 also defines what it means for a
substitution θ to “respect the guardedness of a type”, written θ respects ∆.

3.2 Typing rules
The typing judgment Γ ⊢ e : σ is given in Figure 5, along with some auxiliary judgments.

Rules Abs and AnnAbs concern lambda abstractions, and are straightforward. AnnAbs deals
with a lambda (λ(x ::ϕ). e) where the user has supplied a type annotation ϕ: we simply bring x into
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Expressions / terms e F . . . | (h e1 . . . en :: σ )

Γ ⊢ e : σ

Γ ⊢h h : ϕ ϕ ⩽n
u σ1, . . . ,σn ,η Γ ⊢arg e1 : σ1 . . . Γ ⊢arg en : σn

AnnApp
Γ ⊢ (h e1 . . . en :: ∀b .η) : ∀b .η

Fig. 6. Declarative type system with annotations in applications

scope with type ϕ. As discussed in Section 2.4, where there is no annotation (rule Abs) we insist
that x has a fully-monomorphic type τ .

All the action is in rule App for n-ary applications (h e1 ... en). The first step is typing the head of
the application h. The corresponding judgment ⊢h either looks for a variable in the environment or
uses the normal typing judgment if the head is another kind of term.
After typing the head, we instantiate the type of the head by means of the ⩽n

s judgment. Note
that this instantiation judgment is parametrized by a sort s (this is needed to support applications
with and without annotations).
• All type constructors are considered invariant, even functions. This means that neither
[∀a. a→ a] ⩽̸n

s [Int → Int ] nor Int → (∀a. a→ a) ⩽̸n
s Int → Int → Int.

• For function types the judgment ⩽n
s embodies a bit of their covariance. Given a function f of

the type ∀a. a→ (∀b. b→ a) we are allowed to first instantiate a with some type τ1, which
returns a result ∀b. b→ τ1, and then instantiate b if a second argument is supplied.
As a consequence, we can work around the lack of variance of function types by η-expanding.
Continuing the previous example, if we need an expression of type τ1 → τ2 for some hole,
we cannot directly use f . But we can use λx y. f x y instead, which allows the ⩽2

s judgment
to kick in and instantiate the two type variables.
• The status of the variables in the result type depends on the parameter s to the judgment.
In the case of App, this parameter is set to m. As a consequence, those variables appearing
only in the result of the function – the part of the type past the given number of arguments –
have to be instantiated with fully monomorphic types.

Whereas the type of the head of the application may only be instantiated, the arguments may also
ongo generalisation, that is, abstraction of some of the type variables. Generalisation is embodied
by the ArgGen rule. Without such a rule, we would not be able to type check twice (λx . x). Here
the type of λx . x must be of the form τ → τ for some fully monomorphic τ . If we choose τ to be a
fresh Skolem variable, we can derive Γ ⊢arg λx . x : ∀a. a→ a, as needed.

Theorem 3.1 (Compatibility with Hindley-Milner). Let e be an expression in the syntax of
Hindley-Milner without let. If Γ ⊢HM e : τ , then Γ ⊢ e : τ .

Proof. By inspection of the rules for the syntax-directed version of Hindley-Milner. Notice
that all instantiations done in Hindley-Milner are admissible in GI, since the fully monomorphic
types form a subset of the top-level monomorphic types which again form a subset of the fully
polymorphic types. So even if a type variable is sorted as t or u, an instance of sort m can be
chosen. □

3.3 Annotations in applications
With the rules in Figure 5, a single variable (not applied to any arguments) is treated as a 0-ary
application. So rule App cannot get any guardedness information from its arguments, and so its type

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

can only be instantiated with fully monomorphic types. As a result,we cannot assign the polymorphic
type [∀ a. a → a] to the empty list [ ]. That is embarrassing, because we cannot typecheck, say
([ ] ++ ids). Figure 2 has other examples.
One solution is to allow the programmer to give a type annotation for an application; see the

syntax in Figure 6. Now, since annotations fully specify the types, we do not need to impose
guardedness restrictions on those variables appearing in the result. Thus, the expression [ ] ::
[∀a. a→ a] is accepted by the system, even though the type variable in a is not guarded by a type
constructor. GI is quite symmetrical in terms of syntax: both abstractions and applications may be
annotated.

Annotations also free us from having a different judgment for declarations and expressions. For
every combination f :: σ ; f = e in the source code, we just need to pose the problem of checking
f = e :: σ to guarantee that the declaration is well-typed.

The extensions required for annotated applications are described in Figure 6. Rule AnnApp is
almost identical to App, except for the choice of parameter to the instantiation judgment, which
is u. This implies that in contrast to non-annotated applications, variables in the result type of
the function might be substituted by any type, polymorphic or not. This is sensible, since the
annotation tells us exactly what the types are those variables should be instantiated with.

Of course, annotated applications serve for arbitrary applications, not just 0-ary ones. Take the
expression single (λx . x). Due to the type of single being ∀p. p→ [p ], the type of the expression
must be [τ → τ ] for a monomorphic τ . If we want instead to obtain [∀ a. a → a], we can just
annotate the result, thus single (λx . x) :: [∀a. a→ a]. Since the variable a appears in the result type
of single, this is perfectly fine by rule AnnApp.
There is some room for choice when introducing annotations in the language. In particular,

the annotations can be taken as rigid – the type of the decorated expression is exactly the one
appearing as annotation – or soft – the resulting type might be an instance of the one stated
in the annotation. We take the former route, which is shared by most of the previous work in
impredicative polymorphism. One good consequence of this choice is that we can embed System F,
as described in Section 3.5.

3.4 let bindings, do notation and pattern matching
A realistic language, such as Haskell [Marlow et al. 2010], includes other syntactic forms apart
from those inherited from the λ-calculus. In some cases, those forms are defined as translations to
the core language; let bindings and do notation are some important examples. As we shall see in
this section, adopting the standard translation for these language constructs to derive their typing
rule is not desirable: we can do better.

Let us start by looking at let-bindings. Following the long-established tradition, we could translate
let x = e1 in e2 as (λx . e2) e1, leading to the following derivation.

Γ,x : τ ⊢ e2 : σ
Γ ⊢ λx . e2 : τ → σ τ → σ ⩽1

m τ , µ

Γ ⊢ e1 : ϕ ϕ ⩽0
m τ

Γ ⊢arg e1 : τ
Γ ⊢ let x = e1 in e2 : µ

But this translation imposes an important restriction on the type of x: it must be fully monomorphic
even though the type of e1 might be more general. The reason is that we try to guess the type of e1
by looking at the way it is used in e2, instead of looking at e1 itself. But there is no need to be so
restrictive! The rule Let in Figure 7 works in the other direction: the type obtained from typing e1
is put in the environment as the one for x, allowing the type of x to be fully polymorphic instead.
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Data constructor ∋ K

do-statements s F e | x ← e ; s | let x = e ; s
Expressions / terms e F . . . | let x = e1 in e2 | do s | case e0 of{K x → e}

Γ ⊢ e : σ
Γ ⊢ e1 : ϕ Γ,x : ϕ ⊢ e2 : σ Let

Γ ⊢ let x = e1 in e2 : σ
Γ ⊢doM s : M ϕ

Do
Γ ⊢ do s : M ϕ

Γ ⊢ e0 : σ0 σ0 ⩽0
m Tϕ0

for each branch Ki xi → ei with
Ki : ∀a b . σi → Ta ∈ Γ
Γ,xi : [a 7→ ϕ0]σi ⊢ ei : ϕ⋆

Case
Γ ⊢ case e0 of{K x → e} : ϕ⋆

Γ ⊢doM e : µ

Γ ⊢arg e : µ
Γ ⊢doM e : µ

Γ ⊢arg e : M ϕ Γ,x : ϕ ⊢doM s : η

Γ ⊢doM x ← e ; s : η

Γ ⊢ e : ϕ Γ,x : ϕ ⊢doM s : η

Γ ⊢doM let x = e ; s : η

Fig. 7. Declarative type system with let, do and pattern matching

One difference between let bindings inGI and Hindley-Milner is that the latter always generalizes
the type of a let-bound identifier before passing it to the body of the let. Vytiniotis et al. [2011]
argue however that let-generalisation is not so important in practice and that in complex type
systems how to generalize is not completely clear. If desired, generalisation can be obtained by
annotating the bound expression, let x = (e1 :: λϕ) in e2.
Translating do notation to a sequence of applications of >>= raises the same problems as let.

The Haskell 2010 Language Report [Marlow et al. 2010] defines do {x ← e1; e2 } to be translated
to e1 >>= λx → e2. As before, this means that a fully monomorphic type has to be inferred for x,
neglecting all information obtained from e1. This restriction has been reported to forbid some
classes of domain-specific languages [Augustsson 2011]. We give less restrictive rules in Figure 7,
that again allow the type of x to be fully polymorphic.
Introducing pattern matching in the language gives no surprises, as witnessed by rule Case.

We first need to check that the scrutinized expression e0 can be given a type compatible with the
indicated data constructor. It is important to note that the mere presence of the data constructors is
enough to know the type constructor T, there is no inference at that point. Then we introduce new
term variables in each branch, whose type is obtained by combining the type of the constructor
with the inferred values for the type variables in T, namely ϕ0. The return type of every branch
should be equal, ϕ⋆ (note that we do not allow the types of the branches to be instantiated).

3.5 Embedding of System F into GI
Our system is as expressive as System F, the gold standard for a fully-expressive impredicative type
system:

Theorem 3.2 (Embedding of System F). Let e be a System F expression. If Γ ⊢F eF : σ { e ′, as
defined in Figure 8, then Γ ⊢ e ′ : σ in GI.
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System F terms eF F x | λ(x :: σ ). eF | Λa. eF | eF eF | eF σ

Γ ⊢F eF : σ { e ′

x : µ ∈ Γ
Γ ⊢F x : µ { x

x : σ ∈ Γ
Γ ⊢F x : σ { (x :: σ )

Γ,x : τ ⊢F eF : ϕ { e ′

Γ ⊢F λ(x :: τ ). eF : τ → ϕ { λx . e′
Γ,x : σ ⊢F eF : ϕ { e ′

Γ ⊢F λ(x :: σ ). eF : σ → ϕ { λ(x :: σ ). e′

Γ ⊢F eF : ϕ[a1, . . . ,an] { e ′

Γ ⊢F Λa1. . . .Λan . eF : ∀a1. . . . ∀an .ϕ { (⌊e ′⌋ :: ∀a1 . . . an .ϕ)
Γ ⊢F e0 : σ { e ′0 σ0 = ∀a1. σ1 → ∀a2. σ2 → . . . ∀an . σn → ∀ar ap . µr

σ0 ⩽n
u [a1 7→ ϕ1]σ1, [a1 7→ ϕ1,a2 7→ ϕ2]σ2, . . . , [a1 7→ ϕ1, . . . ,an 7→ ϕn ,ar 7→ ϕr ]µr

Γ ⊢F e1 : [a1 7→ ϕ1]σ1 { e ′1 . . . Γ ⊢F en : [a1 7→ ϕ1, . . . ,an 7→ ϕn]σn { e ′n

Γ ⊢F e0 ϕ1 e1 ϕ2 e2 . . . ϕn en ϕr : ∀ar . µr {

e ′0 e
′
1 . . . e

′
n if ap is empty

and ϕr fully mono.
(e ′0 e ′1 . . . e ′n :: ∀ar . µr ) otherwise

where

{
⌊e :: σ ⌋ = ⌊e⌋
⌊e⌋ = e otherwise

Fig. 8. Translation from System F

The main difference between GI and System F is that in the former impredicative instantiation is
restricted by guardedness. The presented translation relies on annotations to work around them.
• Following GI we present n-ary application – which in the case of System F also includes
type application. The given application rule only works if the guardedness restrictions are
satisfied, otherwise an annotation on e0 needs to be added before applying the rule.
• In GI the result of a non-annotated application always gets a top-level monomorphic type.
This is not the case in System F, and thus an annotation may be required to further generalize.
• Completely unrestricted instantiation is only available via annotations. In order to apply this
translation, we need to split applications so that guardedness guarantees are always met.
Every time we split, we introduce a new annotation guiding the type checking process.

3.6 Metatheory
One key property of GI is that all impredicative instantiations are settled by the shape of the
expression and the types in the environment. Formally, every possible type derivation for an
expression e results in the same type, modulo some monomorphic substitution. For that reason, we
say that impredicative polymorphism is not guessed in GI.

Theorem 3.3 (Impredicative instantiation is not guessed). Let Γ be a (possibly open) envi-
ronment and e an expression. For every pair of fully monomorphic substitutions θ1 and θ2,
(1) If θ1Γ ⊢h e : σ1 and θ2Γ ⊢h e : σ2, then there exists a polymorphic type σ ∗ and fully monomorphic

substitutions φ1 and φ2 such that σi = φiσ ∗.
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Guarded impredicative polymorphism 1:13

(2) If θ1Γ ⊢ e : σ1 and θ2Γ ⊢ e : σ2, then there exists a polymorphic type σ ∗ and fully monomorphic
substitutions φ1 and φ2 such that σi = φiσ ∗.

Proof. See Appendix C.1. □

Corollary 3.4. Let Γ be a closed environment. If Γ ⊢ e : σ1 and Γ ⊢ e : σ2, then there exists a
polymorphic type σ ∗ and fully monomorphic substitutions φ1 and φ2 such that σi = φiσ ∗.

This property suggests a notion of principal type similar to the one found in Hindley-Milner. A
principal type for an expression e is defined as a type σ ∗ for which any other type assignment ϕ to
e is equal to θσ ∗ for a fully monomorphic substitution θ . The fact that we only need to consider
fully monomorphic substitutions here is a direct consequence of Theorem 3.3. The proof of the
principal types property, however, is a corollary of other properties of the inference process, which
we describe in Section 4.5.

In the remainder of this section we look at some properties of GI concerning derivations and
stability under transformations. The latter are important as they provide a basis for the compiler to
optimize the code while respecting the typing semantics.

Theorem 3.5. If Γ ⊢ u : σ and Γ,x : σ ⊢ e[x] : ϕ, then Γ ⊢ e[u] : ϕ.
Proof. By induction over the expression e[x]. The only interesting case is when x is the head

of an application, that is, e = x e1 . . . en and u is also an application, u = hu1 . . . un . Note that in
that case the assigned types are always top-level monomorphic, so σ = µ and ϕ = η.
The derivations involved look like:

Γ ⊢h h : σu σu ⩽m
m σ1, . . . ,σm , µ

Γ ⊢arg ui : σi
Γ ⊢ hu1 . . . um : µ

Γ ⊢h x : µ µ ⩽m
m ϕ1, . . . ,ϕn ,η

Γ ⊢arg ej : ϕ j
Γ ⊢ x e1 . . . en : η

and the question is whether we can derive:

Γ ⊢h h : σu σu ⩽m+n
m σ1, . . . ,σm ,ϕ1, . . . ,ϕn ,η Γ ⊢arg ui : σi Γ ⊢arg ej : ϕ j

Γ ⊢ hu1 . . . um e1 . . . en : η
All the premises on this last rule come directly from those in the hypotheses, except for the instan-
tiation σu ⩽m+n

m σ1, . . . ,σm ,ϕ1, . . . ,ϕn ,η. For the n last components we can reuse the derivation
in the second hypothesis. For the firstm components, inspection on the rules of guardedness show
that any instantiation withm arguments is admissible whenm + n are considered. □

Theorem 3.6. Let app :: ∀a b. (a → b) → a → b and revapp :: ∀a b. a → (a → b) → b be the
application and reverse application functions, respectively. Given two expressions f and e such that
Γ ⊢h f : σ0, and σ0 ⩽0

m σ1 → ϕ then:

Γ ⊢ f e : ϕ ⇐⇒ Γ ⊢ app f e : ϕ ⇐⇒ Γ ⊢ revapp e f : ϕ

The hypothesis σ0 ⩽0
m σ1 → ϕ means that type variables may only be instantiated with fully

monomorphic variables. Thus, this transformation only respects well-typedness for the whole
predicative and higher-rank fragment, but not in the fully impredicative system in general.

Proof. Let us compare the derivations of the first two expressions.

Γ ⊢h f : σ0 σ0 ⩽
1
m σ1, µ Γ ⊢arg e : σ1

Γ ⊢ f e : µ
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Γ ⊢h app : ∀a b. (a→ b) → a→ b

Γ ⊢h f : σ0 σ0 ⩽
0
m σ1 → µ

Γ ⊢arg f : σ1 → µ Γ ⊢arg e : σ1
∀a b. (a→ b) → a→ b ⩽2

m (σ1 → µ),σ1, µ
Γ ⊢ f e : µ

The application of app can be instantiated with any type, given that both variables a and b are
guarded. The premises coming from f and e are the same, except for the highlighted ones. We
know that if σ0 ⩽0

m σ1 → ϕ, then σ0 ⩽1
m σ1,ϕ, by inspection of the rule relating instantiation and

function types. The case for revapp is similar. □

4 TYPE INFERENCE USING CONSTRAINTS
In the previous section we described GI from a declarative perspective. But the utility of the system
depends critically on whether we can formulate an efficient type inference algorithm for GI, a
question that is the focus of this section.

Our approach to type inference is based on [Pottier and Rémy 2005], which works in two steps:
(1) Constraint generation: walk over the syntax tree of the source program, generating typing

constraints. Constraint-generation is a simple algorithm over a large source-language syntax;
i.e. there are many simple cases to consider. Constraint generation typically generates many
unification variables that stand for as-yet-unknown types.

(2) Constraint solving: solve the typing constraints generated in step 1. Constraint solving is a
complex algorithm that works over a small language of constraints; i.e. there are few cases to
consider but constraint solving is subtle. Constraint solving not only determines satisfiability
(i.e. whether the program is typeable at all) but also a substitution that specifies the type that
each unification variable stands for.

An attractive feature of this two-step approach is that it scales well with the complexity of the type
system. For example, earlier work dubbed OutsideIn(X) explains how to apply the Pottier and
Rémy [2005] approach to a language like Haskell, with type classes, type-level functions, GADTs,
and the like [Vytiniotis et al. 2011]. Another advantage is that is supports more sophisticated
type-error diagnosis [Heeren et al. 2003; Serrano and Hage 2016; Zhang et al. 2015].
Performing type inference via constraints may carry a performance cost, due to the increased

book-keeping. GHC alleviates this by solving “easy” constraints on-the-fly using ordinary unifica-
tion, rather than emitting them to be solved later. Doing so might threaten the constraint-based
error diagnosis; however the on-the-fly solver can easily be disabled when one wants to prioritise
error messages over performance.

4.1 Constraints
The main challenge of type inference for impredicativity concern instantiation and generalisation of
terms with polymorphic type. For example consider the call (head ids True). When fully elaborated
we want to generate this System F term:

head (∀a. a→ a) ids Bool True

That is, we instantiate head at type (∀a. a→ a), then apply it to ids, to produce a result of type
(∀ a. a → a). Now we must in turn instantiate that type with Bool to get a function of type
(Bool → Bool) which we can apply to True. This second instantiation is problematic because, at
constraint generation time, we do not yet know what type we are going to instantiate head at; all
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Unification variable names U ∋ α , β ,γ ,δ , . . .
Unification variables υ F αs

Fully monomorphic types τ F αm | a | T τ
Top-level monomorphic types µ,η F α t | a | T σ
Polymorphic types σ ,ϕ F αu | ∀a. µ a may be empty, a ⊆ ftv(µ)
Types with generalisation g F

A{υ}.C ⇒ σ υ may be empty

Constraints C F ⊤ Trivial
| C1 ∧C2 Conjunction
| σ ∼ ϕ Equality
| σ ⩽n

s µ Instantiation
| g ⪯ σ Generalisation
| ∀a. ∃υ.C Quantification

Free unification variables fuv(σ ) = free unification variables of σ

Fig. 9. Extended syntax

we know is that (head ids) has type α for some as-yet-unknown type α . So we want to defer the
instantiation decision.
Sometimes we must defer generalisation decisions too. For example, consider the function

application ((:) (λx . x) ids). In System F terms, we are trying to infer the following elaborated
program:

(:) (∀a. a→ a) (Λa. λ(x : a). x) ids

in which (:) is instantiated at type (∀a. a→ a), and (:)’s first argument is generalised to have that
polymorphic type. Now consider constraint generation for this expression. We may instantiate
the type of (:) with a fresh unification variable, α say. Ultimately the type of ids forces α to be
∀a. a→ a, but we don’t know that yet. Moreover, in the final program we will need to generalise
the type of (λx . x), but again at constraint generation time we don’t know that type either.

When we don’t know something at constraint generation time, the solution is to defer the choice,
by generating a constraint that represents that choice. This is the key idea of the constraint solving
approach. The game is to develop a constraint language that neatly embodies the choices that we
want to defer, and a solver that can subsequently make those choices. With that in mind, Figure 9
gives the syntax of our constraint language.

As mentioned earlier, constraint generation produces many unification variables, each of which
stands for an as-yet unknown type. Looking at Figure 9, a key idea is that unification variables
are drawn from three distinct “alphabets”: αs for each of the threes sorts s. (Sorts were introduced
in Figure 3.) The sort of a unification variable specifies the possible types that the unification
variable can stand for; operationally, a unification variable of sort s may only be unified with types
belonging to that sort.
The syntax presents several kinds of constraints C . Equality constraints are self explanatory.

Instantiation constraints arise from the occurrence of a polymorphic variable, whose type must
be instantiated – but that decision must be deferred (embodied in a constraint). Quantification
constraints arise from explicit user type signatures, and pattern matching on data types involving
existentials and GADTs. Both are fairly conventional. However generalisation constraints are new;
they precisely embody the deferred decision about generalisation that we mention above. We will
elaborate on all these forms in what follows.
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1:16 Anon.

Γ ⊢h e : σ { C

x : σ ∈ Γ VarHead
Γ ⊢h x : σ { ϵ

e not var. or app. Γ ⊢ e : σ { C
ExprHead

Γ ⊢h e : σ { C

Γ ⊢ e : σ { C

α fresh Γ,x : αm ⊢ e : σ { C
Abs

Γ ⊢ λx . e : αm → σ { C

Γ,x : ϕ ⊢ e : σ { C
AnnAbs

Γ ⊢ λ(x ::ϕ). e : ϕ → σ { C

Γ ⊢h h : ϕ { C
Γ ⊢ ei : σi { Ci
υi = fuv(σi ,Ci ) − fuv(Γ,ϕ,C)

α , β ,δ fresh
App

Γ ⊢ h e1 . . . en : δt { C ∧ ϕ ⩽n
m α

u
1 → βu1 ∧ A{υ1}.C1 ⇒ σ1 ⪯ αu1

∧ βu1 ⩽n−1
m αu2 → βu2 ∧ A{υ2}.C2 ⇒ σ2 ⪯ αu2

∧
... ∧

...
∧ βun ⩽0

m δ
t

Γ ⊢h h : ϕ { C
υ ′ = fuv(ϕ,C) − fuv(Γ)

Γ ⊢ ei : σi { Ci
υi = fuv(σi ,Ci ) − fuv(Γ,ϕ,C)

α , β fresh
AnnApp

Γ ⊢ (h e1 . . . en :: ∀b .η) : ∀b .η

{ ∀b . ∃αu βu υ ′.
©«
C ∧ ϕ ⩽n

u α
u
1 → βu1 ∧ A{υ1}.C1 ⇒ σ1 ⪯ αu1

∧ βu1 ⩽n−1
u αu2 → βu2 ∧ A{υ2}.C2 ⇒ σ2 ⪯ αu2

∧
... ∧

...
∧ βun ⩽0

u η

ª®®®®¬
Fig. 10. Constraint generation, part 1

In GI constraints do not form part of the source language; they are internal to the solver. But once
we extend this approach to work with type system extensions such as type classes in in Section 5,
we shall impose a distinction between simple constraints – those which the programmer can type
in a program – and extended ones – which are internal to the algorithm.

4.2 Constraint generation
Constraint generation is described in Figure 10 as a four-element judgment Γ ⊢ e : σ { C . The first
two elements are inputs: the environment Γ and the expression e for which to generate constraints.
The output of the process is a type σ assigned to the expression, possibly including some unification
variables, and the set of constraints C that the types must satisfy. We first focus on the generation
process for the core calculus, which we extend later to cover the rest of the language: annotations,
let bindings and pattern matching.

Rules Abs and AbsAnn are not surprising: they just extend the environment with a new unifica-
tion variable or a given polymorphic type, respectively, and then proceed to generate constraints
for the body of the abstraction. The usage of a fully monomorphic variable in Abs mimics the
restriction imposed by the declarative specification.
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Rule App is where most of the work is done. Just like the declarative specification (Figure 5), the
head of the application is typed using an ancillary judgment Γ ⊢h h : ϕ { C , which either looks up
a variable in the environment or threads the information to the normal gathering process.

Then the first column of constraints, each of form βui ⩽n−i
m αui+1 → βui+1, successively decompose

the function type ϕ to expose its arguments. At each argument we may need to instantiate the
top-level foralls of the function type to expose the arrow; hence the use of subsumption ⩽n

s rather
than type equality. Note that what we express declaratively in a single relation σ0 ⩽n

s σ1, . . . ,σn , µ
is expressed as a sequence of constraints

σ0 ⩽
n
s σ1 → ϕ1 ϕ1 ⩽

n−1
s σ2 → ϕ2 . . . ϕn−1 ⩽1

s σn → ϕn ϕn ⩽0
s µ

The reason will become apparent once we describe how solving proceeds.
The second column of constraints introduces a completely new constraint form, g ⪯ σ , which

we call generalisation constraint. These constraints allow us to defer the generalisation decisions to
the solver, as sketched in Section 4.1. The constraint (A{υ}.C ⇒ ϕ) ⪯ σ should be read “a term of
type ϕ with constraints C and unification variables υ can be instantiated and/or generalised to have
type σ ”. Even looking at the syntax alone, you can see that the fruits of constraint generation for
each argument ei are wrapped up, along with the expected argument type αi from the function,
into a generalisation constraint for the solver to deal with later.
Rule AnnApp deals with a type-annotated application (h e1 . . . en :: σ ). It is similar to App,

but it is the first rule to introduce a quantification constraint ∀b . ∃υ.C . This binds the Skolem
variables b from the type signature, and existentially quantifies the unification variables free in the
constraint but not used outside it. The other significant difference is the use of ⩽n

u in the column of
instantiation constraints, with suffix u, rather than m in rule App, exactly following the difference
between AnnApp and App in Figure 6 and 5 resp.

4.3 Constraint solving
The solver takes the generated constraint C and its free unification variables υ = fuv(C), and
repeatedly applies the solver rules in Figure 11, until no rule applies. The result is a residual
constraint. If the residual constraint is in solved form, then the program is well typed; if not, the
unsolved constraints (e.g. Int ∼ Bool) represent type errors that can be reported to the user. We
will discuss solved form shortly, in Section 4.3.3, but first we concentrate on the solver rules that
incrementally solve the constraint.
Each of the rules in Figure 11 rewrites a configuration C; υ to another configuration. The

unification variablesυ are existentially quantified, so you can think of a configuration as representing
∃υ.C . Rule conj and forall are structural rules: the former allows a rule to be applied to one part
of a conjunction, while the latter allows a rule to be applied under a quantification constraint. To
avoid clutter we implicitly assume that the rules are read modulo commutativity and associativity
of ∧; that is why conj only has to handle the left conjunct.

4.3.1 Basic rules. Rule eqrel removes trivial equality constraints of the form σ ∼ σ . Note that
two polymorphic types need to be syntactically equal (modulo α-equality) to match this rule. Rule
eqmono indicates that two types headed by constructors are equal if and only if their heads coincide
and all the arguments are equal.
eqsubst is the only rule that involves the interaction of two constraints. It applies the substi-

tution of a unification variable to any other constraints conjoined with it (remember the implicit
associativity and commutativity of ∧), provided sorts are respected, and there is no occurs-check.
Notice that the equality constraint is not discarded; it remains in case it is needed again; indeed,
these equality constraints remain in a solved constraint (Section 4.3.3).
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1:18 Anon.

freshenns (σ ) =⇒ ⟨υ, µ⟩

µ ▷n
s ∆ α fresh υi = α

∆(ai )
i

freshenns (∀a. µ) =⇒ ⟨υ, [a 7→ υ]µ⟩

C ; υ =⇒ C ′ ; υ ′

C1 ; υ =⇒ C ′1 ; υ
′

[conj]
C1 ∧C2 ; υ =⇒ C ′1 ∧C2 ; υ ′

C ; υ in =⇒ C ′ ; υ ′in[forall] ∀a. ∃υ in.C ; υ =⇒ ∀a. ∃υ ′in.C ′ ; υ
[eqrefl] σ ∼ σ ; υ =⇒ ⊤ ; υ
[eqmono] Tσ1 . . . σn ∼ Tϕ1 . . . ϕn ; υ =⇒ σ1 ∼ ϕ1, . . . ,σn ∼ ϕn ; υ
[eqsubst] (αs ∼ σ ) ∧C ; υ =⇒ (αs ∼ σ ) ∧ [αs 7→ σ ]C ; υ

if ⊢ σ : s, and α < ftv(σ )
[eqvar] αs1 ∼ βs2 ; υ =⇒ βs2 ∼ αs1 ; υ if s1 ⊏ s2
[eqfully] αm ∼ σ ; υ =⇒ {βs ∼ γm | βs ∈ fuv(σ ), s , m} ; υ,γm

[instmono] µ ⩽n
s η ; υ =⇒ µ ∼ η ; υ

[inst∀l] (∀a. µ) ⩽n
s η ; υ =⇒ µ ′ ∼ η ; υ,υ ′

where freshenns (∀a. µ) =⇒ ⟨υ ′, µ ′⟩
[inst

A
l] (A{υ ′}.C ⇒ σ ) ⪯ η ; υ =⇒ C ∧

(
σ ⩽0

m η
)
; υ,υ ′

[inst∀r] g ⪯ (∀a. µ) ; υ =⇒ ∀a. (g ⪯ µ) ; υ

Fig. 11. Solving rules

Given this different behaviour of the different sorts of variables, the solver has to propagate this
information. eqvar ensures that whenever we have two variables with different sorts, the least
restrictive one is substituted by the most restrictive. For example, when we have an unrestricted
αu and a top-level monomorphic β t , then αu should be replaced by β t , and not the other way
around. Full monomorphism goes deeper: eqfully ensures that if a type σ is equated with a fully
monomorphic variable αm , all the variables in σ turn fully monomorphic too.
One difference between these rules and other presentations is that we do not rewrite an unsat-

isfiable constraint, such as Int ∼ Bool, to ⊥. Instead, that constraint is simply stuck, and we can
report it at the end.

4.3.2 Instantiation and generalisation constraints. The last set of rules take care of instantiation
and generalisation constraints.

For instantiation constraints ⩽n
s , Rule instmono encodes the fact that in our system if two top-

level monomorphic types µ,η are in an instance relation, they must be equal. This is a consequence
of the invariance of type constructors. inst∀l instantiates a polytype σ with fresh unification
variables, much as in the usual Damas-Milner algorithm, except that we must use a sort-respecting
instantiation. This is done by freshenns , which in turn uses the already-introduced classification
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judgment ▷n
s (Figure 4). Finally, the new variables enter the set of existentially quantified vari-

ables. Notice that the right hand side of an instantiation constraint σ ⩽n
s µ is always a top-level

monomorphic type µ, so we do not need to worry about having a polymorphic type on the right.
Finally, we come to generalisation constraints, which (recall Section 4.1) express a deferred

generalisation decision. Rule inst
A
l is simple: if the right hand side has no top-level foralls (it is

of the form η) then there is no generalisation to be done, so it suffices to release all the captured
constraints C and existentials υ ′ into the current constraint.

inst
A
r is where actual generalisation takes place. In order to forge some intuition, let us look at

the constraint
(A{α β}. α ⩽0

m β ⇒ α → β) ⪯ (∀p.p → p)
This generalisation constraint says that by performing some solving and possibly abstracting over
some of the variables α and β , we should get the polymorphic type ∀p.p → p. Following standard
practice, we skolemise the type on the right, introducing a fresh skolem or rigid variable p, which
should not be unified.

α ⩽0
m β ∧ α → β ∼ p → p

We obtain a solution by making α ∼ β ∼ a. But in order for this solution to remain valid, we must
guarantee that the skolem p does not escape to the outer world. We recall this restriction by means
of a fresh quantification constraint ∀p.∃α β .(α ⩽0

m β ∧ α → β ∼ a → a). Rule instAr achieves
this rather neatly simply by doing skolemisation and pushing the g inside; then inst

A
l will do the

rest.

The rules applicable to instantiation and generalisation constraints do not handle every case. In
particular, whenever an unrestricted variable appears in one of the sides of the constraint, there
are good reasons to wait:
(1) If we have αu ⩽n

s µ we cannot turn it directly into αu ∼ µ, because αu might be unified later
to a polymorphic type and we need instantiation.

(2) Similarly, if we have (A{α }.C ⇒ µ) ⪯ αu , and αu is later substituted by a polytype, we must
skolemise.

The guardedness restrictions are carefully crafted to ensure that the solver is never completely
stuck, unless the constraint set as a whole is inconsistent. A single constraint can be stuck for some
time, but if we are dealing with a consistent constraint set, the promise is that it will, by solving
steps applied to other constraints in the constraint set, become unstuck.

Theorem 4.1. Suppose Γ ⊢ e : σ { C . Then C is either inconsistent, or can be rewritten to a new
set C ′ without instantiation and generalisation constraints which fixes the value of all unrestricted
and top-level monomorphic variables.

The resulting constraint set is an instance of the problem of first-order unification under a mixed
prefix. [Comon and Lescanne 1988] (which in our system is expressed by quantification constraints).
A complete algorithm to solve this kind of problem is described by Pottier and Rémy [2005]. As a
consequence, we have this result:

Corollary 4.2. Suppose Γ ⊢ e : σ { C . Then C is either inconsistent, or can be rewritten to a
solved form.

Unfortunately, once we extend the language of types, by introducing type classes and local
assumptions, completeness is known not to hold [Vytiniotis et al. 2011]. Furthermore, the approach
by Pottier and Rémy [2005] is no longer applicable. With that in mind, Figure 12 presents one extra
rule that, applied exhaustively like the others, also solves the problem of unification under a mixed
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1:20 Anon.

ftv(F ) ∩ a = ∅ αs = fuv(F ) ∩ υin γ s fresh E =
∧

α s ∈ α α
s ∼ γ s

[float] ∀a. ∃υin. (C ∧ F ) ; υ =⇒ [αs 7→ γ s]F ∧ ∀a. ∃υ in. (C ∧ E) ; υ,γ s

Fig. 12. Solving rules for quantification constraints

a ; α ; β ⊢ C solved

⊢ σ : s ftv(σ ) ⊆ a ∪ α
SolvedVar

a ; α ; {β} ⊢ αs ∼ σ solved

a ; α ; β1 ⊢ C1 solved a ; α ; β2 ⊢ C2 solved SolvedConj
a ; α ; β1 ⊎ β2 ⊢ C1 ∧C2 solved

υ = γ 1 ⊎ γ 2 a ∪ b ; α ∪ γ 1 ; γ 2 ⊢ C solved
SolvedQuant

a ; α ; ∅ ⊢ ∀b . ∃υ.C

Fig. 13. Definition of solved set of constraints

prefix, and does scale to handle local assumptions. It is also rather simple, and is directly inspired
by how GHC handles constraints.

Rule float simply floats constraints F from inside a quantification constraint to outside. When
can we do that? Precisely when the constraint does not mention the skolems. But what about the
existentials? For example, suppose we have

∃α . . . . (∀a.∃β .(α ∼ [β]) ∧C) . . .
We would like to float the constraint (α ∼ [β]) out of the quantification constraint, but then β
would be out of scope. We can solve this by “promoting” β : producing a fresh β ′ that lives in the
outer scope, and making β equal to it, thus:

∃α , β ′. . . . (α ∼ [β ′])) ∧ (∀a.∃β .(β ∼ β ′ ∧C)) . . .
All this is expressed directly by rule float. If we cannot float, we have a skolem escape error; for
example, consider:

∃α . . . . (∀a.∃β .(α ∼ [a]) ∧C) . . .
Here we cannot float (α ∼ [a]) because it mentions the skolem a, so an inner skolem has leaked
into an outer scope (α is bound further out). Floating makes manifest that skolem escape has not
happened, and brings the constraint nearer to solved form, which we treat next.

Conjecture 4.3. The solver presented in Figure 11 and Figure 12 is complete for unification problems
under a mixed prefix.

4.3.3 Solved form. A constraint is in solved form if it consists only of quantification and equality
constraints (υ ∼ σ ); and the equalities constitute a well-sorted idempotent substitution of its
unification variables. For example

∃αm .(αm ∼ Int) ∧ (∀b .∃βu . βu ∼ (b → Int))
is in solved form. Being in solved form is more than just syntactic; here are two constraints that
are not in solved form

∃α .(α ∼ Int) ∧ (α ∼ Bool) ∃α . . . . (∀b .α ∼ [b]) . . .
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Γ ⊢ e : σ { C

Γ ⊢ e1 : ϕ { C1 Γ,x : ϕ ⊢ e2 : σ { C2 Let
Γ ⊢ let x = e1 in e2 : σ { C1 ∧C2

Γ ⊢ e0 : σ0 { C0 α , β fresh

for each branch Ki xi → ei
Ki : ∀a bi . σi → Ta ∈ Γ
Γ,xi : [a 7→ αu]σi ⊢ ei : ϕi { Ci
υi = fuv(ϕi ,Ci ) − fuv(Γ) − α

Case
Γ ⊢ case e0 of{K x → e} : βu { C0 ∧ (σ0 ⩽0

m Tαu) ∧ ∀bi . ∃υi . (Ci ∧ βu ∼ ϕi )

Fig. 14. Constraint generation, part 2

Ĉs = θ

Cs = E ∧ R, where E are all the equalities in Cs

Ĉs = [α 7→ σ | α ∼ σ ∈ E]

Fig. 15. Substitution induced by a solved form

In the first there are two equalities for α (we should apply eqsubst to make progress); in the second,
there is a skolem-escape problem. However it is OK for a unification variable to have no equalities;
it is simply unconstrained.
Figure 13 defines solved form precisely. We keep a set of variables β for which we ensure that

there is precisely one equality constraint, and another set α (the unconstrained variables) for
which there are none. Rule SolvedVar expects precisely one β , checks well-sortedness, and also
checks that σ does not mention any variables other than the skolems and unconstrained unification
variables – the latter check ensures idempotence.

Rule SolvedConj partitions the β between the two conjunctions. Rule SolvedQuant partitions
the local existentials υ into the unconstrained sets, γ1 and γ2 resp.

4.4 let bindings and pattern matching
The generation rules for the rest of the language are given in Figure 14. The rules are rather
unsurprising. In rule Case we need a quantification constraint to introduce new skolem constants,
for the existentially quantified type variables bi in the data constructor. We refrain from describing
the rules for do notation for the sake of conciseness; they do not pose any particular problem.

4.5 Soundness and principality
The presented gathering and solving process satisfies the usual properties of soundness and
principality with respect to the declarative specification. In order to state these results, we need the
auxiliary notion of substitution induced by a solved form, given in Figure 15.

Theorem 4.4 (Soudness). Let Γ be a closed environment and e an expression. If Γ ⊢ e : σ { C

and Cs is a solution for C with an induced substitution Ĉs, then we have Γ ⊢ e : Ĉs(σ ).

Theorem 4.5 (Principality). Suppose Γ ⊢ e : σ . Then there exists a type σ⋆ such that Γ ⊢ e : σ⋆

and σ = πσ⋆ where π is a fully monomorphic substitution.
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1:22 Anon.

Polymorphic types σ ,ϕ F αu | ∀a. Q ⇒ µ

Simple constraints Q F ⊤ | Q1 ∧Q2
| σ ∼ ϕ Equality
| . . . Open for extension
| C σ1 ... σn Type classes, for example

Extended constraints C F Q | C1 ∧Q2
| σ ⩽n

s µ Instantiation
| g ⪯ σ Generalisation
| ∀a. ∃υ. ( Q ⊃ C) Quantification and implication

Γ ⊢ e : σ { C

...
... AnnApp

Γ ⊢ (h e1 . . . en :: ∀b .Q ⇒ η) : ∀b .Q ⇒ η { ∀b . ∃υ. ( Q ⊃ C ∧ . . . )

Γ ⊢ e0 : σ0 { C0 α , β fresh

for each branch Ki xi → ei
Ki : ∀a bi . Qi ⇒ σi → Ta ∈ Γ
Γ,xi : [a 7→ αu]σi ⊢ ei : ϕi { Ci
υi = fuv(ϕi ,Ci ) − fuv(Γ) − α

Case
Γ ⊢ case e0 of{K x → e} : βu { C0 ∧ (σ0 ⩽0

m Tαu) ∧ ∀bi . ∃υi . ( Qi ⊃ Ci ∧ βu ∼ ϕi )

Fig. 16. Extensions for integration with other constraints

The proofs of these results are given in Appendix C.2.

4.6 Implementation
A prototype implementation of the type inference process, optionally including the relaxed condi-
tions described in Section 6, is available at url.anonymized. The expressions in Figure 2 are accepted
or rejected as described by the table. The prototype also includes support for Haskell’s type classes
by extending GI as described in Section 5.

5 INTEGRATIONWITH OTHER LANGUAGE FEATURES
One of the main advantages of organising a type checker around the concept of constraints is that
extensions to the type system can be accommodated for quite easily. Indeed, this is one of the main
advantages of our system over existing work. In this section we describe how to deal with other
forms of constraint beyond the standard equality constraints we now support.

For example, Haskell supports type classes, which restrict the scope of a polymorphic abstraction
to a subset of types. The archetypal example is Eq, which describes the types with support for
decidable equality. Such a type class constraint is visible in the type of the equality operator
(≡) :: ∀a. Eq a⇒ a→ a→ Bool. Similarly, languages like OCaml and PureScript feature row (or
record) types like {x :: Point, y :: Point } in addition to usual ADTs.

The good news is that a constraint-based formulation of typing makes it easy to cope with new
concepts if they can also be described in terms of constraints. Several examples in the literature, like
HM(X ) [Pottier and Rémy 2005] and OutsideIn(X) [Vytiniotis et al. 2011], are actually frameworks
which can be parametrized by different constraint systems, hence the X in their names.
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The modifications needed to accommodate the new kinds of constraints in GI are given in
Figure 16. First, we split up the syntax of constraints into so-called simple and extended constraints.
The former consists of constraints that can be used by programmers in their programs, while the
second category consists of additional constraints that are internal to the solver. Syntax for any
new kind of constraints can be added to the syntax of simple constraints Q ; we have in fact done
so for the specific example of type classes. We also modify the syntax of polymorphic types so that
they may contain a number of simple constraints.
Now, suppose that we need to check that ∀a.Ord a⇒ a→ Bool is an instance of ∀a. Eq a⇒

a → Bool, in other words (A{α }. Eq α ⇒ α → Bool) ⪯ (∀ a.Ord a ⇒ a → Bool). During this
process we are allowed to assume that Ord a holds in order to discharge Eq α . To be able to store
this information in our extended constraints, we modify the syntax of quantification constraints to
include the assumed information as part of an implication, in this case

∀a. (Ord a ⊃ A{α }. Eq α ⇒ α → Bool ⪯ a→ Bool)
In turn, this requires changes to the solving rules (Figure 11 and Figure 12), which will then

need to relate two sets of constraints: the assumptions and the wanted constraints. Whenever we
go under an implication, we introduce the constraints that are part of the antecedent as additional
assumptions. The solver is allowed to rewrite in both sets, and more importantly, to use an assumed
constraint to rewrite a wanted one. The modifications to the rules are very much in line with
[Vytiniotis et al. 2011] so we do not discuss it further in the paper; we do provide the modified
rules in Appendix A.
Implication constraints are also introduced by the updated rules for constraint gathering. An

annotated application – rule AnnApp – may also mention constraints, which are assumed while
checking the enclosed expression. Rule Case allows some constraints to be locally valid, which
means that the system gains support for Generalized Algebraic Data Types (GADTs).

6 RELAXING GUARDEDNESS
In this section we show a very simple change to the constraint solver that allows it to solve
more constraints. The downside is that, while it accepts all programs that satisfy the declarative
specification, we do not yet have a simple declarative specification that precisely characterises all
the programs it accepts.
We start with an example. Consider the expression (choose [ ] ids) from Figure 2. It fails to

typecheck in GI, for the reason discussed in Section 3.3: Rule 1 says that we cannot instantiate the
empty list [ ] polymorphically, forbidding the instance [∀a. a→ a] which is required. In this case
the guardedness restriction seems to be too restrictive: all the information to infer the correct type
seems to be there and we are not violating the “polymorphism is not guessed” policy.

What actually goes wrong in the solver? Here are the constraints generated for (choose [ ] ids):
∀a. a→ a→ a ⩽2

m α
u
1 → βu1 βu1 ⩽2

m α
u
2 → βu2 βu2 ⩽0

m δ
t
3A{δ t1}. ∀a. [a] ⩽0

m δ
t
1 ⇒ δ t1 ⪯ αu1

A{δ t2}. [∀a. a→ a] ⩽0
m δ
t
2 ⇒ δ t2 ⪯ αu2

From rule App we get one instantiation constraint and one generalisation constraint for each
argument, plus one instantiation constraint for the result. The first instantiation is rewritten (rule
inst∀l) to ϵ t → ϵ t → ϵ t ⩽2

s α
u
1 → βu1 where ϵ t is fresh. ϵ is chosen to be top-level monomorphic

since it appears in at least one given argument, but never under a constructor. This constraint in
combination with the rest of the first row leads to a series of equalities αu1 ∼ αu2 ∼ δ t3 ∼ ϵ t .
We replace αu1 , α

u
2 , and δ

t
1 by the more restrictive ϵ t (rules eqvar and eqsubst). Now we can

unwrap the first generalisation constraint (using inst
A
l), because ϵ t is guaranteed to be top-level
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[conj] As before
[forall] As before
[float] As before
[eqrefl] As before
[eqmono] As before
[eqsubst] (αs ∼ σ ) ∧C ; υ =⇒ (αs ∼ σ ) ∧ [αs 7→ σ ]C ; υ if���⊢ σ : s , and α < ftv(σ )

Fig. 17. Solving rules for phase 2 of relaxed GI

monomorphic. That gives the constraint (∀a.a → a) ⩽0
m ϵ
t , which we can instantiate (inst∀l) to

get ϵ t ∼ [νm]. The key point here is that νm is chosen to be fully monomorphic because the type
of [ ] has no arguments. The final step is to unwrap the second generalisation constraint to get
[∀a. a→ a] ⩽0

m [νm], which quickly leads to the residual constraint νm ∼ ∀a. a→ a.
And at this point we are stuck! A monomorphic variable is equated with a quantified type, which

is signaled as an error by the solver. But why is it an error? Remember, we are trying to find a
substitution for the unification variables that solves the entire constraint. Well, making νm stand
for ∀a. a→ a will certainly solve this one! The reason for the sortedness constraints was to guide
instantiation and generalisation. But since there are no instantiation or generalisation constraints,
the presence of sorts only stops us from making progress. So at this point we simply ignore the
sortedness restriction in eqsubst and continue solving.

For example, suppose that at the moment that no further rules from Figure 11 can be applied, we
are left with the following constraints:

C = αm ∼ ∀a. a→ a ∧ β t ∼ [αm]
Note that this is not a solved form, because the equality over αm is ill-sorted, and the equality over
β t mentions another unification variable, αm , for which a further equality holds. Now we start
phase 2 of the solver, using only the rules in Figure 17. Apart from the structural rules conj, forall
and float, in this second phase we only handle equality constraints, but now without respecting the
sorts. In other words, the ⊢ σ : s condition is dropped from the updated rule eqsubst, and the old
rules eqvar and eqfully – which were responsible for propagating sort restrictions – are gone.
Applied to our set of constraints C , running through phase 2 leaves us with the following:

αm ∼ ∀a. a→ a ∧ β t ∼ [∀a. a→ a] .
If we disregard the sortedness restrictions imposed by guardedness, these constraints are in solved
form, and the program is accepted.

A reasonable question to ask is: why do we need phase 2 at all? The reason is that until we have
performed substitutions exhaustively, we cannot be sure that we have a solution free of occurs-
check errors. This happens, for example, if in the above example we replace the first constraint
with αm ∼ ∀a.a → β t → a.

We conclude this section by noting that we have also experimented with other, yet more powerful
extensions of the solver, some involving iteration. It remains future work to decide their cost/benefit
trade-off, and to seek better declarative specifications. The swamp is calling!

7 RELATEDWORK
Early work has showed that full type inference for System F is an undecidable problem [Wells 1993]
– partial type inference with known positions of generalisation but unknown instantiations can be
reduced to higher-order unification [Pfenning 1988]. It is also folklore that simple specifications of

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Guarded impredicative polymorphism 1:25

System F lack principal types, making thus modular type inference and the additions of ML-style
let-bindings impossible.
Type inference in the presence of higher-rank types but where instantiation of quantified

variables is restricted to monomorphic types is a problem that has received successful and practical
solutions [Dunfield and Krishnaswami 2013; Peyton Jones et al. 2007; Rémy 2005]. These systems
exploit type annotations and a mixture of bidirectional propagation and unification and enjoy
fairly simple declarative specifications while algorithmically being modest extensions of Algorithm
W. Because of predicative instantiation they are typically more expressive than a predicative
restriction of System F and type programs in Fη, a variant of System F with implicit η-conversions.
Notably [Rémy 2005] present a modification that does allow impredicative – but explicit, based on
annotations and quantified constraints – instantiation.
On the other hand no satisfactory solution has been presented to-date that tackles impredica-

tivity with a good benefit-to-weight ratio. The MLF work [Botlan and Rémy 2003, 2009; Rémy
and Yakobowski 2008] presents a declarative specification and type inference algorithm for an
(impredicative) extension of System F that relies on extending quantification with instance bounds.
The resulting system is powerful, but also quite complex to implement; in return we get back
principal types. Stemming from this work there have been several attempts to simplify the spec-
ification and restrict the user-facing part of MLF to System F types, while still relying on the
same powerful unification algorithm. For example FPH [Vytiniotis et al. 2008] exposes an extra
“box” structure around inferred types (that would be hidden under a constraint in the context
in MLF). Flexible types [Leijen 2009] accept quantification over instantiation constraints but not
rigid equality constraints, thanks to a slightly different treatment of type annotations than MLF.
Implementing any of these systems in a working compiler is a significant undertaking, and so is
the integration with other forms of polymorphism such as type classes [Leijen and Löh 2005].
There have been also proposals of systems with simpler algorithms than MLF and hence more

likely to be incorporated in existing type inference engines. Boxy Types [Vytiniotis et al. 2006] has
been an early – largely unsuccessful due to its specification complexity – attempt to push bidirec-
tional type inference for higher-rank types to do a small amount of impredicative instantiation.
HMF [Leijen 2008] on the other hand, stems from a generalisation of the Hindley-Milner algorithm,
and keeps some of its nice properties such as principal types but imposes side conditions which
range over all possible derivations, making it more difficult to grasp why a program fails to type
check. QML [Russo and Vytiniotis 2009], inspired by earlier work on boxed polymorphism [O’Toole
and Gifford 1989; Rémy 1994], proposes the introduction of a non-implicitly-instantiable univer-
sal quantifier. In QML, let-bindings can still be generalized a-la Hindley-Milner and implicitly
instantiated. In addition first-class polymorphic values can be passed and returned, but can only
be instantiated and constructed explicitly, through annotations. The presence of two forms of
quantifiers as well as a rather inflexible form of annotation hindered the practicality of the system.
Recent work [Eisenberg et al. 2016] also proposes the distinction between an implicitly instantiable
and an explicitly instantiable universal quantifier; explicit type applications can be impredicative,
whereas implicit ones have to be monomorphic.

We return now to Figure 2, wherewe present a collection of examples appearing in selected related
works on type inference for impredicativity, namely MLF [Botlan and Rémy 2003], HMF [Leijen
2008], FPH [Vytiniotis et al. 2008], HML [Leijen 2009]. We have selected those systems to compare
because they strike extremely well in expressivity and require very few type annotations. The table
shows the flexibility/expressivity price we pay in order to keep the implementation and specification
costs low, and avoid the introduction of new type system features (such as types with constraints
or boxes) or new forms of annotations (such as QML-style instantiation annotations). We also show
the annotation that can recover the typeability of a program in cases where a valid type exists. As
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one observes, MLF can type all of the programs that do not require an implicit η-expansion (k h lst)
or the use of a polymorphic function argument at two types λf . (f 1, f True). Unsurprisingly, HML
is only minimally less powerful as it cannot type λxs. poly (head xs) because xs would have to be
assigned a polymorphic type, even though it’s only used at this type. FPH is equally expressive for
the applicative fragment of System F – however its treatment of λ-abstractions requires the returned
type to be a fully-resolved top-level monomorphic type and hence fails to type check choose id auto
because auto will be assigned the same type as GI infers ((∀ a. a → a) → b → b). HMF on
the other hand is just based on local decisions about polymorphic instantiations and – without
an extension to n-ary applications – fails to type check programs where the local instantiation
has to be delayed to take more arguments into account (e.g. fails to type check id : ids). The
relaxed GI system on the other hand can – modulo the quirk about not generalizing the bodies
of lambda abstractions that only MLF and HML can tackle – type check the same programs as
those systems. The vanilla (non-relaxed) GI for which a declarative specification exists is more
restrictive than those systems but incomparable to HMF. To determine why a program fails to
type check (and how it should be fixed) it suffices to determine whether some function needs to
be instantiated to a function type with top-level polymorphism in its arguments. For example,
f (choose id) ids fails to type check because it requires the instantiation of choose :: ∀a. a→ a→ a
to (∀ a. a → a) → (∀ a. a → a) → (∀ a. a → a) and none of the arguments have a type with a
top-level constructor. The fix is to add an annotation around the offending expression to determine
its type: f (choose id :: (∀a. a→ a) → (∀a. a→ a)) ids. The relaxed GI pretty much recovers some
of the lost expressivity, and is by construction as expressive as the vanilla GI, but we have yet to
determine whether it admits a simple declarative specification.

8 CONCLUSION
In this paper we have introduced the notion of guarded impredicativity, based on the key idea
that in a function application, type variables that occur under a type constructor can be safely
instantiated impredicatively. As Figure 2 shows, our system is somewhat less powerful than the
most expressive impredicative type systems that can be found in the literature (HMF, HML, FPH
and MLF). However, our system has the combined advantage of easy integration with existing
constraint solving frameworks such as GHC’s OutsideIn(X) and a concise declarative specification
making it easy for programmers to predict whether their program will compile. We have given a
sound and complete inference algorithm, and proven a principal type property for our system. A
prototype implementation, including integration with Haskell’s type classes, is available.

An obvious candidate for future work is to integrate our type system into GHC proper. Although
it will certainly involve some work, e.g., the existing higher-ranked type system now implemented
in GHC can be removed, our prototype was constructed in a way that is consistent with the
architecture of the current OutsideIn(X) implementation. We do not expect big complications to
arise. Because we are then dealing with a single integrated contraint solving framework in GHC,
we can investigate the use of heuristics for type error improving diagnosis and domain-specific
type error diagnosis within the context of GHC [Hage and Heeren 2007; Serrano and Hage 2016].
As we hinted at the end of Section 6, we have already looked at yet more powerful extensions

of the solver, some involving iteration, for which we need to come up with a suitable declarative
specification.
As the reader may have noticed, some expressions need to η-expanded in order to type check.

This a direct consequence of the fact that all our type constructors are invariant. Seeing how far
we remove the need for η-expansion is yet another interesting topic for further research.
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