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t-ratio

Gosset (1908)
I The t-ratio of the sample mean has the exact tn−1 distribution
I A fundamental intellectual achievement

Linear regression
I Gosset’s result extends to classical t-ratios (classical standard errors)
I Classical t-ratios have tn−k distribution
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But...

Classical standard errors are no longer used in economic research

Papers use either
I Heteroskedasticity-consistent (HC)
I Cluster-robust (CR)
I Heteroskedasticity-and-autocorrelation-consistent (HAC)
I Justification is asymptotic

Most assess significance (testing and confidence intervals) using finite
sample distribution:

I tn−k distribution (HC)
I tG−1 distribution (CR)
I THIS IS WRONG!!!
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“reg y x, cluster(id”)

Regression:
I Uses HC1 variance estimator

F White estimator scaled by n/(n− k)
I Uses tn−k distribution for p-values and confidence intervals

F UNJUSTIFIED!

Clustered:
I Uses CR1 variance estimator

F Described later, ad hoc

I Uses tG−1 distribution for p-values and confidence intervals

F No finite sample justification
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This paper

Provides an exact theory of inference
I Linear regression with robust standard errors
I Linear regression with clustered standard errors

Exact distribution of HC and CR t-ratios under i.i.d. normality
I Computable
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Linear Regression with Heteroskedasticity

yi = x ′i β+ ei
E (ei |xi ) = 0
E
(
e2i |xi

)
= σ2i

n observations

k regressors

Core model in applied econometrics
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Heteroskedastic (HC) Variance Estimation: Some History

Eicker (1963): HC0

Horn, Horn and Duncan (1975): HC2

Hinkley (1977): HC1

White (1980): HC0 for econometrics

MacKinnon and White (1985): HC3

Chesher and Jewitt (1987): Bias can be large

Bera, Suprayitno and Premaratne (2002): Unbiased estimator

Bell-McCaffrey (2002): Distributional approximation

Cribari-Neto (2004): HC4

Cribari-Neto, Souza and Vasconcellos (2007): HC5

Cattaneo, Jansson and Newey (2017): Many regressors
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HC Variance Estimation

OLS:
β̂ =

(
X ′X

)−1 X ′Y
Residuals:

êi = yi − x ′i β̂
HC0

V̂0 =
(
X ′X

)−1 ( n

∑
i=1
xix ′i ê

2
i

) (
X ′X

)−1
HC1

V̂1 =
n

n− k
(
X ′X

)−1 ( n

∑
i=1
xix ′i ê

2
i

) (
X ′X

)−1
I robust covariance matrix in Stata
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HC2:

V̂2 =
(
X ′X

)−1 ( n

∑
i=1
xix ′i ê

2
i (1− hi )

−1
) (
X ′X

)−1
I hi = x ′i (X

′X )−1 xi
I Unbiased under homoskedasticity

HC3:

V̂3 =
(
X ′X

)−1 ( n

∑
i=1
xix ′i ê

2
i (1− hi )

−2
) (
X ′X

)−1
I jackknife
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HC3 (jackknife) is a conservative estimator

Theorem. In the linear regression model,

E
(
V̂3 | X

)
≥ V = E

((
β̂− β

) (
β̂− β

)′
| X
)

(However, inference using HC3 is not necessarily conservative.)
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HC t-ratios

t-ratio for R ′β:

t =
R ′
(

β̂− β
)

√
R ′V̂ R

Distribution theory
I Asymptotic: t →d N(0, 1)
I This is what we (typically) teach

Distribution used in practical applications
I Finite Sample: t ∼ tn−k
I This is what most applied papers use
I Incorrect
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Clustered Samples

Observations are (yig , xig )
I g = 1, ...,G indexes cluster (group)
I i = 1, ..., nn indexes observation within g th cluster

Clusters are mutually independent

Observations within a cluster have unknown dependence

In panels, (yig , xig ) could be demeaned observations
I Assumptions fully allow for this

Number of observations ng per cluster may vary across cluster

Total number of observations n = ∑G
g=1 ng
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Cluster Regression

yg = (y1g , ..., yng g )
′ is ng × 1 vector of dependent variables

Xg = (x1g , ..., xng g )
′ is ng ×K regressor matrix for g th cluster.

Linear regression model
I yg = Xg β+ eg
I E (eg |Xg ) = 0
I E

(
eg e′g |Xg

)
= Sg
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Cluster-Robust (CR) Variance Estimation

OLS:

β̂ =

(
G

∑
g=1

X′gXg

)−1 ( G

∑
g=1

X′gyg

)
Residual:

êg = yg −Xg β̂

Variance estimator

V̂0 =

(
G

∑
g=1

X′gXg

)−1 ( G

∑
g=1

X′g êg ê
′
gXg

)(
G

∑
g=1

X′gXg

)−1
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Adjustments

Chris Hansen (2007) adjustment

V̂ =
(

G
G − 1

)
V̂0

Justified in “Large homogenous clusters” framework

Stata adjusment

V̂1 =
(
n− 1
n− k

)(
G

G − 1

)
V̂0

No justification
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Other covariance matrix estimators

CRV2
I Replace OLS residual êg with eg = (I−Hg )−1/2 êg
I Hg = Xg

(
∑Gg=1 X

′
gXg

)−1
X′g

I CRV2 is unbiased under i.i.d. dependence
I Recommended by Imbens-Kolesar (2016)

CRV3:
I Replace êg with ẽg = (I−Hg )−1 êg
I Theorem: CRV3 conservative under clustered dependence:

E
(
V̂3 | X

)
≥ V
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Cluster-Robust (CR) Variance Estimation: Some History

Methods: Moulton (1986, 1990), Arellano (1987)
Popularization: Rogers (1993), Bertrand, Duflo and Mullainathan
(2004)

Large G asymptotics: White (1984), C. Hansen (2007), Carter,
Schnepel and Steigerwald (2017)

Fixed G asymptotics: C. Hansen (2007), Bester, Conley and C.
Hansen (2011), Conley and Taber (2011), Ibragimov and Mueller
(2010, 2016)

Small Sample: Donald and Lang (2007), Imbens and Kolesar
(2016), Young (2017), Canay, Romano, and Shaikh (2017)

Bootstrap: Cameron, Gelbach and Miller (2008), MacKinnon and
Webb (2017)
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Illustration: Heteroskedastic Dummy Variable Regression

Dummy variable model
I Angrist and Pinchke (2009)
I Imbens and Kolesar (2016)

yi = β0 + β1xi + ei
∑n
i=1 xi = 3

ei ∼ N(0, 1)
Coeffi cient of interest: β1
Simulation with 100,000 replications
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Large Size Distortion with HC Standard Errors

Rejection Probability of Nominal 5% Tests
Using tn−k Critical Values

n = 30
HC0 0.18
HC1 0.17
HC2 0.14
HC3 0.10

Notice that even conservative HC3 t-ratio over-rejects.
That is because the tn−k distribution is incorrect.
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Distortion increases with Sample size!

Rejection Probability of Nominal 5% Tests
Using tn−k Critical Values

n = 30 n = 100 n = 500
HC0 0.18 0.23 0.24
HC1 0.17 0.22 0.24
HC2 0.14 0.17 0.18
HC3 0.10 0.13 0.14

Reason: Highly Leveraged Design Matrix
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Simulation Results

All procedures over-reject

HC1 correction doesn’t help

Unbiased estimator HC2 over-rejects

Conservative estimator HC3 over-rejects

tn−k vs N(0, 1) ineffective

Conclusion: Distributional approximation needs improvement
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Exact Distribution of White t-ratio

Assumption: Observations are i.i.d., ei |xi ∼ N
(
0, σ2

)
Step 1: t-ratio is ratio of normal to weighted sum of chi-squares

t ∼ Z√
Q

Q =
K

∑
i=1
wiQi

where Z ∼ N (0, 1) , Q1 ∼ χ21, ..., QK ∼ χ21
Step 2: The exact distribution of Q is a chi-square mixture

Step 3: The exact distribution of t is a student t mixture
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Step 1

R ′
(

β̂− β
)
=
(

σ2R ′ (X ′X )−1 R
)1/2

Z where Z ∼ N (0, 1)

di = R ′ (X ′X )
−1 xi , D = diag

{
d21 , ..., d

2
n

}
, M = I − X (X ′X )−1X ′,

B = MDM, Qi iid χ21
λ1, ...,λK are the non-zero eigenvalues of B.

Then

R ′V̂ R =
n

∑
i=1
d2i ê

2
i = ê

′Dê = e ′Be = σ2
K

∑
i=1

λiQi

Together

t =
R ′
(

β̂− β
)

√
R ′V̂1R

=
Z√

∑K
i=1 wiQi

where wi = λi/R ′ (X ′X )
−1 R
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Ratio of normal to weighted sum of chi-squares

Under normality

t =
R ′
(

β̂− β
)

√
R ′V̂1R

=
Z√

∑K
i=1 wiQi

This representation holds for HC0, HC1, HC2, HC3, HC4
heteroskedasticity-robust t-ratios

I The weights wi depend on the specific estimator

This representation holds for CRV0, CRV1, CRV2, CRV3
cluster-robust t-ratios

I The weights wi depend on the specific estimator
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Step 2: Exact Distribution of Q

Weighted sum of chi-square random variables
For Q1 ∼ χ2k1 , ..., QN ∼ χ2kN mutually independent, wi > 0, ki > 0

Q =
N

∑
i=1
wiQi

We write its distribution as

G (u|w1, ...,wN ; k1, ...kN ) = P (Q ≤ u) .

Conventional chi-square when w1 = · · · = wN
Distribution function G unknown

Classic problem in statistical theory

Approximation methods dominate

We now provide the exact distribution
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Theorem 1: Distribution of Q

G (u|w1, ...,wN ; k1, ...kN ) =
∞

∑
m=0

bmGK+2m
(u

δ

)
where Gr (u) is the χ2r distribution,

K =
N

∑
i=1
ki

δ = min
m
wm

b0 =
N

∏
i=1

(
δ

wi

)ki/2
bm =

1
m

m

∑
`=1

bm−`a`, m ≥ 1

am =
N

∑
i=1

ki
2

(
1− δ

wi

)m
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Comments

Theorem 1 shows that the distribution of Q can be written as an
infinite mixture of chi-square distributions

The weights are non-negative, sum to one

Weights are determined by a simple recursion in known parameters

Theorem 1 is a refinement of Castano and Lopez (2005).
I Obtained by inversion of transformed MGF
I Uses theory of MVUE of Gamma distributions
I Written in terms of Laguerre polynomials
I Their result is written as a function of two tuning parameters.
I Theorem 1 is obtained as a limiting case (taking the limit as one tuning
parameter limits to zero and the other is set at its boundary).

I Theorem 1 is a simpler, more convenient, and numerically accurate.
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Step 3: Exact Distribution of t-ratio

Generalized T distribution
For Z ∼ N (0, 1) , Q1 ∼ χ2k1 , ..., QN ∼ χ2kN , mutually independent,
wi > 0, ki > 0

T =
Z√

∑N
i=1 wiQi

We write its distribution as

F (u|w1, ...,wN ; k1, ...kN ) = P (T ≤ u)

If k1 = · · · = kN = 1 we write the distribution as F (u|w1, ...,wN ) .
Conventional student t when w1 = · · · = wN
Step 1 showed that HC t-ratios are distributed generalized T
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Derivation
The distribution of T is

P (T ≤ u) = P
(
Z ≤

√
Qu
)
= E

(
Φ
(√

Qu
))

Its density is

E
(

φ
(√

Qu
)√

Q
)
=
∫ ∞

0
φ (
√
qu)
√
qg (q) dq

where g is the density of Q
Applying Theorem 1, this equals

∞

∑
m=0

bm
δ

∫ ∞

0
φ (
√
qu)
√
qgK+2m (q/δ) dq

=
∞

∑
m=0

bm (δ (K + 2m))
1/2 fK+2m

(
u
√

δ (K + 2m)
)

where fK+2m is the student t density
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Theorem 3: Distribution of T

F (u|w1, ...,wN ; k1, ...kN ) =
∞

∑
m=0

bmFK+2m

(
u
√
(K + 2m) δ

)
where Fr is the student distribution
Comments:

Exact distribution is an infinite mixture of student t distributions

Specializes to conventional student t when wi are all equal
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Theorem 4: Alternative expression

F (u|w1, ...,wN ; k1, ...kN )

= FK
(
u
√
Kδ
)
+ u
√

δ
∞

∑
m=1

b∗m
fK+2m−2

(
u
√
(K + 2m− 2) δ

)
√
K + 2m− 2

where

b∗m = 1−
m−1
∑
j=0

bj

Comments:

Obtained by applying sequential integration by parts

Preferable computational form
I Only one distribution evaluation
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Theorem 5: Exact Distribution of White t-ratio

t ∼ F (u|w1, ...,wN )
where

wi = λi/R ′ (X ′X )
−1 R

λ1, ...,λK are the non-zero eigenvalues of B = D1/2MD1/2

di = R ′ (X ′X )
−1 xi

D = diag
{
d21 , ..., d

2
n

}
M = I − X (X ′X )−1X ′
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Finite Sample Distribution

This is the exact finite sample distribution of the White HC t-ratio
under normality.

The distribution is determined by the design matrix X ′X

This is entirely new

The exact distribution is not student t. It is a mixture of student t
distributions.

The difference can be large when the design matrix is highly leveraged.
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Computation Issue 1

Computation of eigenvalues of B = D1/2MD1/2

I n× n matrix
I Unreasonable to compute B for very large n
I Eigenvalue calculation reasonable for n ≤ 1000.

F Unreasonable for n ≥ 5000

Solution for n > 1000:
I Use algorithm which uses function a(x) = Bx instead of matrix B itself
I Only calculate largest, say L = 10, eigenvalues
I Matlab “eigs” function very fast, even for n = 1, 000, 000

When only L eigenvalues calculated
I ∑Ni=1 wi = tr (B) = ∑ d2i − tr

(
(X ′X )−1(X ′DX )

)
I λ∗L+1 = ∑Ni=L+1 wi = tr (B)−∑Li=1 wi
I w∗L+1 = λ∗L+1/(n− k − L)
I Approximate ∑Ni=1 wiQi ' ∑Li=1 wiQi + w

∗
L+1χ2n−k−L
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Computation Issue 2

Coeffi cient recursion bm = 1
m ∑m

`=1 bm−`a`
Fast for m ≤ 1000. Slow for large m
Convergence when ∑M

m=0 bm ' 1
I Requires large M when weights are highly unbalanced

In such cases, we may need to make a computational approximation
I Under investigation
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Computation Issue 3

Distribution function evaluation

FK
(
u
√
Kδ
)
+ u
√

δ ∑∞
m=1 b

∗
m
fK+2m−2

(
u
√
(K+2m−2)δ

)
√
K+2m−2

Computation using this formula is fast
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Exact Distribution

Advantages
I Computatable exact distribution under normality
I Improved accuracy when regressor matrix is highly leveraged

Disadvantages
I Increased computation cost relative to classical methods
I Reliable algorithm in development

Limitations
I Assumes homoskedasticity
I Assumes normality
I Linear parameters

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 37 / 54



Alternative

Bell-McCaffrey (2002)
I Satterthwaite (1946) approximation for Q is αχ2K where α and K
match first two moments of Q

I Approximate distribution of t by tK

Endorsed by Imbens-Kolesar (2016)

An “approximation”but no formal theory
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Simulation Experiement

Dummy variable model
I Angrist and Pinchke (2009)
I Imbens and Kolesar (2016)

yi = β0 + β1xi + ei
∑n
i=1 xi = 3

Coeffi cient of interest: β1
n = 50 , 100, 500

Compare:
I HC1, HC2, HC3
I tn−k , Bell-McCaffrey, and T distributions

Size and median length of confidence regions

ei ∼ N(0, 1), Heteroskedastic, and student-t errors
100,000 replications
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Design Matrix is Highly Leveraged

n = 50
I HC1 weights wi = {0.33, 0.33, 0.0013, 0.0013, ...}
I HC2 weights wi = {0.47, 0.47, 0.0013, 0.0013, ...}
I HC3 weights wi = {0.70, 0.70, 0.0013, 0.0013, ...}

n = 100
I HC1 weights wi = {0.33, 0.33, 0.0003, 0.0003, ...}
I HC2 weights wi = {0.48, 0.48, 0.0003, 0.0003, ...}
I HC3 weights wi = {0.73, 0.73, 0.0003, 0.0003, ...}

Highly unequal, contrast increases with sample size

Due to high leverage
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals

Normal Homoskedastic Errors

tn−k Bell-McCaffrey Exact T
size Length size Length

n = 50 HC1 0.174 0.032 3.5 0.053 3.0
HC2 0.139 0.033 3.7 0.052 3.2
HC3 0.101 0.035 3.9 0.052 3.3

n = 100 HC1 0.224 0.036 3.9 0.052 3.4
HC2 0.173 0.040 4.0 0.051 3.6
HC3 0.126 0.042 4.0 0.051 3.7

n = 500 HC1 0.240 0.046 4.1 0.051 3.9
HC2 0.183 0.047 4.1 0.051 3.9
HC3 0.137 0.049 4.1 0.051 4.0
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals

Normal Heteroskedastic Errors
σ2(x) = 1(x = 1) + 0.5(x = 0)

tn−k Bell-McCaffrey T
size Length size Length

n = 50 HC1 0.201 0.053 3.3 0.079 2.8
HC2 0.158 0.049 3.6 0.072 3.0
HC3 0.115 0.046 3.8 0.065 3.3

n = 100 HC1 0.228 0.051 3.8 0.065 3.4
HC2 0.175 0.050 4.0 0.061 3.6
HC3 0.128 0.049 4.0 0.058 3.7

n = 500 HC1 0.259 0.052 4.0 0.057 3.8
HC2 0.197 0.052 4.0 0.055 3.9
HC3 0.144 0.052 4.0 0.054 3.9
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals

Normal Heteroskedastic Errors
σ2(x) = 1(x = 1) + 2(x = 0)

tn−k Bell-McCaffrey T
size Length size Length

n = 50 HC1 0.112 0.003 4.5 0.017 3.8
HC2 0.093 0.009 4.5 0.021 3.8
HC3 0.068 0.013 4.5 0.024 3.8

n = 100 HC1 0.182 0.012 4.3 0.021 3.8
HC2 0.140 0.017 4.3 0.027 3.9
HC3 0.106 0.025 4.3 0.033 3.9

n = 500 HC1 0.231 0.034 4.2 0.039 4.0
HC2 0.177 0.039 4.2 0.042 4.0
HC3 0.132 0.042 4.2 0.044 4.1
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Rejection Probability of Nominal 5% Tests
Median Length of 95% Confidence Intervals

t5 Errors

tn−k Bell-McCaffrey T
size Length size Length

n = 50 HC1 0.153 0.022 4.2 0.039 3.6
HC2 0.122 0.023 4.4 0.039 3.7
HC3 0.086 0.024 4.5 0.039 3.9

n = 100 HC1 0.182 0.012 4.6 0.038 4.0
HC2 0.140 0.017 4.6 0.039 4.2
HC3 0.106 0.025 4.7 0.040 4.3

n = 500 HC1 0.226 0.035 4.7 0.038 4.5
HC2 0.166 0.036 4.7 0.039 4.5
HC3 0.119 0.037 4.7 0.040 4.6
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Expanded Dummy Variable Design

X =



1 1 0 1
1 0 1 1
1 0 0 1
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 1


k = 5

Each dummy variable only equals 1 for 3 observations

Each dummy variable overlaps with first regressor
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Normal Homoskedastic Errors

tn−k Bell-McCaffrey Exact T
size Length size Length

n = 50 HC1 0.188 0.044 3.6 0.052 3.5
HC2 0.113 0.042 3.7 0.051 3.5
HC3 0.047 0.039 3.9 0.051 3.6

n = 100 HC1 0.219 0.044 3.6 0.051 3.5
HC2 0.118 0.042 3.7 0.050 3.5
HC3 0.151 0.040 3.9 0.050 3.5

n = 500 HC1 0.234 0.044 3.6 0.050 3.5
HC2 0.125 0.042 3.8 0.050 3.5
HC3 0.053 0.040 3.9 0.051 3.6
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Normal Heteroskedastic Errors
σ2(x) = 1(x = 1) + 0.5(x = 0)

tn−k Bell-McCaffrey Exact T
size Length size Length

n = 50 HC1 0.255 0.085 2.6 0.092 2.5
HC2 0.166 0.076 2.8 0.088 2.6
HC3 0.079 0.069 3.0 0.084 2.7

n = 100 HC1 0.288 0.082 2.6 0.091 2.5
HC2 0.174 0.074 2.8 0.087 2.6
HC3 0.084 0.068 3.0 0.082 2.8

n = 500 HC1 0.312 0.087 2.6 0.098 2.5
HC2 0.187 0.080 2.8 0.092 2.6
HC3 0.092 0.073 3.0 0.089 2.7
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Normal Heteroskedastic Errors
σ2(x) = 1(x = 1) + 2(x = 0)

tn−k Bell-McCaffrey Exact T
size Length size Length

n = 50 HC1 0.126 0.023 6.0 0.027 5.8
HC2 0.072 0.023 6.1 0.028 5.7
HC3 0.026 0.021 6.3 0.029 5.8

n = 100 HC1 0.152 0.024 6.1 0.027 5.8
HC2 0.077 0.023 6.2 0.028 5.8
HC3 0.030 0.022 6.3 0.030 5.8

n = 500 HC1 0.172 0.022 6.0 0.026 5.8
HC2 0.079 0.021 6.2 0.028 5.8
HC3 0.030 0.021 6.3 0.028 5.8

Bruce Hansen (University of Wisconsin) Exact Inference for Robust t ratio June 2017 48 / 54



t5 Errors
tn−k Bell-McCaffrey Exact T

size Length size Length
n = 50 HC1 0.172 0.037 4.4 0.043 4.2

HC2 0.099 0.035 4.6 0.042 4.3
HC3 0.039 0.032 4.7 0.042 4.3

n = 100 HC1 0.226 0.040 4.4 0.046 4.2
HC2 0.115 0.037 4.6 0.045 4.3
HC3 0.046 0.035 4.8 0.045 4.4

n = 500 HC1 0.227 0.038 4.4 0.044 4.2
HC2 0.115 0.035 4.5 0.043 4.3
HC3 0.046 0.033 4.7 0.044 4.3
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Continuous Design

X ∼ logNormal , otherwise similar
I Also creates highly leveraged samples

Results very similar
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Simulation Summary

tn−k criticals inappropriate

Bell-McCaffrey can be quite conservative

T is precise under homoskedastic normality (as expected)

Both Bell-McCaffrey and T sensitive to heteroskedasticity and
non-normality

HC3 appears least sensitive

HC3 with T distribution reasonably reliable
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Clustered Samples

Same analysis applies to clustered regression and CR standard errors

Under i.i.d. normality, clustered t-ratios have exact T distributions

Weights are determined by regressor matrix

Distortions from normality when design matrix is highly leveraged
I When clusters are heterogeneous
I When only a few clusters are “treated”

Accuracy of conventional distribution theory depends on the number
of clusters G and degree of leverage

I Conventional asymptotics requires a large G , not large n
I Many applied papers don’t even report G
I G should be reported, along with sample size!
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Conclusion

In 1908, Gosset revolutionized statistical inference by providing the
exact distribution of the classical t-ratio

Applied econometrics relies on heteroskedasticity-robust and
cluster-robust standard errors

There is no finite sample theory for HC and CR t-ratios

This paper provides the first exact distribution theory
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Findings

HC and CR t-ratios are NOT student tn−k
The deviation from tn−k can be very substantial

The exact distribution (under iid normality) is generalized T

Exact distribution depends on regressor matrix X

Correct finite sample p-values and confidence intervals can be reported
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